Category Archives: Injury prevention

Low Back Pain in Runners: In a Battle of Muscle Supremacy, Evil Prevails

Introduction:Chronic-back-pain-image

When we think of running injuries we immediately think lower extremity, IT Band syndrome, Patellofemoral Pain Syndrome, Achilles Tendinopathy, Medial Tibial Stress Syndrome, Plantar Fasciitis, and the like.  However, one of the most common and debilitating injuries in runners is low back pain.  So why are runners so at risk of developing low back pain? Most musculoskeletal injuries are multifactorial, but more often than not many chronic injuries result from underlying movement dysfunction.

Vladamir Janda (1928-2002) revolutionized human movement dysfunction and rehabilitation in 1979 when he described three compensatory movement syndromes.  These syndromes were a result of pattern overload (i.e. running) and static posturing. Janda recognized that certain muscles were prone to weakness while others were overactive. He continually investigated these movement syndromes and later learned that the muscle imbalances were systematic, predictable, involved the entire body, and a common cause of injury. Continue reading

A Runner’s Story: From Pain to Performance

Photo_shoot_runningIn 2010, I left clinical rehabilitation and performance training. While I love my current job, I do miss the clinical aspect, which is why I seize opportunities to take on random clients with complex issues.  I’ve never written about my clients, but this case is so common, yet complex, that I thought my readers might be challenged with similar clients/athletes, or might be experiencing similar issues themselves. Here is a runner’s story that went from marathon training, to painful walking and an inability to run. Her experiences with continued failed treatment and the road we have taken to get her back to training and setting personal records. Continue reading

Why Ice and Anti-inflammatory Medication is NOT the Answer

Icing a sprained ankle In July I posted a blog discussing The Overuse of Cryotherapy. The controversy surrounding the topic made it one of the most popular blogs I’ve written. What is surprising to me is that a controversy exists at all. Why, where, and when did this notion of anti-inflammation start? Ice, compression, elevation and NSAIDs are so commonplace that suggesting otherwise is laughable to most. Enter an Athletic Training Room or Physical Therapy Clinic nearly all clients are receiving some type of anti-inflammatory treatment (ice, compression, massage, NSAIDs, biophysical modalities, etc). I evaluated a client the other day and asked what are you doing currently – “Well, I am taking anti-inflammatories and icing.” Why do you want to get rid of inflammation and swelling? I ask this question for both chronic and acute injury!

Continue reading

Simple Stretching Tips to Correct Common Movement Dysfunction

Vladamir Janda revolutionized human movement and rehabilitation when he described three compensatory movement patterns as a result of pattern overload and static posturing.  Since Janda’s introduction we have continued to learn about hypertonic / hypotonic muscles and the delicate interplay they have on integrated functional movement. Static stretching helps correct dysfunctional movement by elongating shortened tissue. Unfortunately, the manner in which many stretches are performed does not target tissue appropriately. Continue reading

Three Ways Ankle Sprains Cause Chronic Knee Pain

knee_patella_intro01The ankle sprain is the most common acute injury in competitive athletics, while the knee is the most chronically injured joint. Coincidence – I think not.

The question:

How does an ankle sprain lead to chronic knee pain, such as runner’s knee, jumper’s knee, Osteochondral defects, and/or general patellofemoral pain?

Three simple answers: Continue reading

Shin Splints 101

This blog post is long overdue. I have had countless people – friends, family members, athletes, clients – all ask me about shin splints. OK, before the Athletic Trainers, Physicians, PTs and other health care providers jump down my throat. Yes, shin splints is a junk term. I am talking about MTSS. I understand this, but the people you treat know them as MTSS, so relax. What are they? How can I get rid of them? Can they be prevented? Despite being one of the most common athletic injuries, recreational or competitive, shin splints are easily treatable and very preventable. Too often sufferer’s deal with the pain and never fix the problem. My goal with this blog is to provide tips to fix the problem and resolve shin splint pain.

Shin splints, or Medial Tibial Stress Syndrome (MTSS), is a chronic injury typically described as dull-ache on the medial, mid-to-lower-third portion of the lower leg. Pain is common during or after activity. In severe cases pain may last for several hours after activity and occasionally the individual will experience nighttime throbbing in the lower leg.

The pain from MTSS is attributed to irritation of the periosteum – a saran wrap like covering around bone – or a stress reaction to the underlying bone. Repetitive pounding or muscle pulling from these structures precipitates the injury. Popular belief is that shin splints are due to poor shoes, training intensity, and training surfaces. However, a critical review article written by Moen, Tol, et al., published in 2009 Sports Medicine found this was not the case. MTSS is often caused by poor joint movement and muscle imbalance.  These movement patterns and muscle imbalances are easily identifiable. The best part is that you can fix these problems at home by following a simple flexibility and strengthening program.

IMG_2285

Blue lines illustrate normal hip-knee-ankle-foot alignment.
Red Lines illustrate femoral and tibial adduction and foot external rotation.
Green arrows show knees caving in and foot arch flattening.

First, let’s see if you have these movement dysfunctions. Observe yourself (in a mirror) walking or doing repeated squats. Do you see one or more of these four things: hips in, knees in, feet flatten, or toes point out? You may have one or all of these patterns; some may be extremely pronounced or could be very subtle. The image here shows a moderate to severe movement. If you observe this, even to the slightest degree, you are at risk for developing shin splints. Overtime, these movement patterns create a muscle imbalance, where some muscles become overactive and some become underactive.

Using the above figure as an example, here are the typical overactive and underactive muscles we would see in a person with shin splints or with these movement patterns.

OVERACTIVE

UNDERACTIVE

Hip Flexors and Tensor Fascia Latae Gluteal  Group (Maximus, Medius)
Lateral calf (lateral gastrocnemius / soleus) Medial Gastrocnemius
Groin muscles (anterior adductor complex) Anterior and Posterior tibialis
Biceps Femoris Medial Hamstrings

Our goal is simple, turn-off the overactive and turn-on the underactive; simple as that. Below is a basic 3-step program that can help correct this issue, step 1 -Turn-off, step 2 – elongate, and step 3 – turn-on. This program can be done daily and would take no longer than 30 minutes from start to finish. Here is what a basic program would look like.

Step 1: Turn-off the overactive muscles using self-myofascial release

  • Gastrocnemius/Soleus
  • Adductors
  • TFL/IT-band
  • Hip Flexors

Foam rolling is the best way to do this if you go at it alone. If you have a  qualified therapist, manual release of these muscles will do the trick. When foam rolling, roll each muscle for 90 seconds and hold tender areas for 20-30 seconds. A YouTube playlist I created, provides good examples and tips on how to perform these techniques.   

Step 2 – Elongate the overactive muscles with static stretching

  • Gastrocnemius/Soleus Static Stretch
  • TFL/IT Band Stretch
  • Kneeling Hip Flexor Static Stretch
  • Adductor Static Stretch

Perform 1-2 sets of the stretch per muscle group and hold the stretch for a maximum of 30 seconds. Brent Brookbush, has a good static stretching playlist that demonstrates these exercises.

Step 3 – Turn on the underactive with isolated strengthening

The above exercises are just examples. There are many exercises to choose from. The important thing is to target the right muscles. Fix the core, attack the glute medius and glute maximus, and work the tibialis anterior and posterior.

In summary, too often I see individuals with shin pain ceasing activity, buying new shoes, investing hundreds of dollars in custom orthotics, or giving themselves an ice bath. Shin splints do not have to be the end of training. They are easily preventable and curable as long as you fix the problem. Following a simple and structured program to correct of common movement dysfunction patterns can eliminate shin splints and many other lower body injuries like Achilles pain, runner’s knee or hip pain.

ACL Injury: New Information on Prevention, Rehabilitation, and Consequences

I have written about knee injuries so much. Every day we are bombarded with research that quite frankly, it gets boring. The problem is with approximately a quarter-million ACL injuries per year, it is safe to say the injury is rampant. The devastating nature and commonality of the injury has provided loads of information on prevention, rehabilitation and mechanisms of injury. I am not going to regurgitate them all, but do want to share some recently published articles that sports medicine experts should read.

Article 1: Negahban, Et al. A systematic review of postural control during single-leg stance in patients with untreated anterior cruciate ligament injury. Knee Surgery Sports Traumatology and Arthroscopy, May, 2013.

I love systematic lit reviews and this SLR aimed to determine postural control on those with ACL injuries. We have many internal systems and senses that help us balance.  Beyond the use of our eyes and ears to sense balance, tiny mechanoreceptors and proprioceptors exist in our tissue that sense abnormal movement. This study found that when the eyes are closed individuals with ACL injuries had increased postural sway and loss of balance. This indicates that the injury and inflammation following injury inhibits our body’s internal mechanism to sense balance. When rehabilitating, be sure to emphasize proprioception exercises.

Article 2: Thomas, Abbey, et al.  Lower Extremity Muscle Strength After Anterior Cruciate Ligament Injury and Reconstruction. Journal of Athletic Training published online first, 2013.

Despite advances in rehabilitation and the numerous studies published on ACL rehabilitation protocols, we appear to be failing. This study shows that at 6 months Status Post ACL reconstruction that global weakness still exists. When comparing strength output from injured vs. uninjured legs it appears the knee-extensors (quads) and knee flexors (hamstrings) are weaker at 6 months when compared to the contralateral side. Conversely hip and ankle strength was not significantly different at 6 months. The timeline to return a player back to competition and activity is 6 months following activity and/or 95% strength of the uninjured side. This study indicates 6 months might be too early. Also, we may need to adjust our strengthening protocols to further stress knee flexion / extension strength.

Article 3 – Bell, DR, Clark, MA, Padua, DA, et al., Two- and 3-Dimensional Knee Valgus Are Reduced After an Exercise Intervention in Young Adults With Demonstrable Valgus During Squatting. Journal of Athletic Training published online first, 2013.

Darin Padua and the UNC Department of Exercise and Sport Science has done a lot of work on knee displacement and correlating the findings with ankle hypomobility and hip underactivity. This particular model used the NASM Corrective Exercise Model as the intervention procedure. This method systematically turns off hyperactive tissue and activates hypotonic tissues. The data revealed that following intervention of the ankle and hip medial knee displacement was significantly reduced.  This information is important as several studies have shown medial knee displacement to be a primary cause of ACL injuries and chronic knee pain.

Article 4: Ericksen, et, al. Different Modes of Feedback and Peak Vertical Ground Reaction Force During Jump Landing: A Systematic Review. Journal of Athletic Training published online first, 2013.

The inability of the body to absorb and control joint movement during high levels of ground reaction forces has been shown to increase risk of ACL injury as well as other chronic knee conditions.  This study evaluated the effect of expert provided and self-analysis feedback reduced peak ground reaction forces. This is not a paramount study but does shows the effectiveness of verbal queuing and observation to correct suboptimal neuromuscular control, specifically during landing and absorption of ground reaction forces through the kinetic chain. Rehab practitioners should incorporate feedback to teach clients appropriate muscle control during ACL rehabilitation.

I would like to say thank you to Darin Padua, PhD, ATC for keeping me abreast with current data. Darin is a leader in sports medicine research and specifically has many published papers on ACL injuries. Darin manages his blog site and also shares info on his twitter account. If you are a health and wellness professional seeking important information rehabilitation and prevention of injury, I recommend you give Darin a follow.

Cheers!

A Blog Inspired By and Dedicated to Runners

I have been looking for something to blog. No idea surfaced that said, “Yes, that is a great blog idea.” That was until yesterday’s tragic Boston Marathon bombing. Runners are a rare breed. You cannot keep them down. A runner’s passion for sport, resilience to challenge, and unique characteristic to rise above is unparalleled by any other athlete. I am not a runner. In fact I am the antithesis of a runner. I go in to anaphylactic shock just hearing the word aerobic exercise, but have many friends who are passionate runners. I dedicate this blog to my running friends, competitors of the Boston Marathon, the friends and family of those impacted by yesterday’s events, and runners everywhere from the competitive to non-competitive. I will keep it true to my blog site and remain sports medicine focused. I hope you find the information useful.

Running is one of the most popular recreational sports in the US. Race events can be found in almost every town. My town – Champaign, IL – has 2 events in the next 4 weeks. Some estimates say 20% of the population is runners and 10% of these people participate in race events. The benefits of exercise are well documented. Running has shown to build confidence and character, reduce stress and improve mood. However, the due to their very nature – the unwillingness stop – running does bring about an increased incidence of musculoskeletal injury.

You don’t need to be an astrophysicist to know running injury is secondary to cumulative overload. Running injuries are multifactorial; neuromuscular imbalance, poor arthrokinematics and other things such as age, nutritional status and environment are to blame. From a biomechanical point of view frontal plane knee adduction moments play a significant role in lower extremity injury. Q-angle – a measure of knee alignment – can indicate risk for running injury. An increased Q-angle can be a result of many neuromusculoskeletal inefficiencies from poor muscular hip control to limited ankle dorsiflexion and excessive forefoot pronation.

Running brings about many injuries, but the most common are Patellofemoral Syndrome, Iliotibial Band Syndrome, Medial Tibial Stress Syndrome / Tibial Stress Fracture, Achilles Tendinitis, Plantar Fasciitis, and Sacroiliac Joint Pain. What is interesting is that all of these injuries can be caused by biomechanical breakdown and neuromusculoskeletal inefficiency. The good is the dysfunctional patterns are identifiable, preventable and correctable. Below is a sample 15 minute injury prevention program from a blog I wrote in Sept 2012. Yes, 15 minutes is all you need to prevent many running injuries.

Step 1: Decrease neurological drive to hypertonic tissue – 3 minutes

  • Self-Myofascial Release (foam roll) or Manual Trigger Point Therapy
    • Gastrocnemius/Soleus – 60 seconds
    • Adductors – 60 sec
    • TFL/IT-band – 60 sec

Step 2: Lengthen hypertonic muscle or joint tissue – 3 minutes

  • Static stretch or joint mobilization
    • Gastrocnemius/Soleus Stretch – 1 set @ 30 sec
    • Kneeling Hip Flexor Stretch – 1 set @ 30 sec
    • Adductor stretch – 1 set @ 30 sec
    • Posterior joint mobilizations at the ankle – 90 seconds

Step 3: Increase neurological drive to hypotonic tissue – ~ 6 minutes:

  • Exercise: Isolated Strengthening or positional isometrics
    • Resisted Ankle Dorsiflexion – 2 sets x 15 reps (slow) (2 minutes)
    • Resisted Hip Abduction and External Rotation- 2 sets x 15 reps (slow) (2 minutes)
    • Resisted Hip Extension – 2 sets x 15 reps (slow) (2 minutes)

Step 4: Integrated Dynamic Functional Movement – ~ 3 minutes

  • Box step-up with overhead dumbbell press – 2 sets x 15 reps (slow)

Beyond the correction of movement dysfunction there are alternatives to treat running injuries which are effective and gaining popularity. This table highlights a few.

Prolotherapy This has been around since the late 1800’s, but has since become popular. The basis of prolotherapy is that it expedites healing by increasing fibroblastic activity and collagen repair.
Autologous Blood Blood is the medium that carries tissue repairing materials to injury sites. However, sometimes, blood cannot deliver adequate amounts of material to the injured area. Thus, injections directed right at the injury site deliver tissue repairing material.
PRP Like autologous blood, Platelet Rich Plasma (PRP) is injection of a concentrated mix of tissue repairing blood components, specifically platelets, which facilitate tissue repair healing.
Bone Marrow Aspirate Concentrate Despite the negative press and belief that stem cells are only derived from an unborn fetus, stem cells do come from other sources – such as bone marrow. By taking stem cells from bone marrow and injecting in to damaged areas will facilitate tissue repair.
ESWT Extracorporeal Shock Wave Therapy might best be known as lithotripsy. Lithotripsy is a procedure in which sound waves blast and destroy kidney stones. ESWT is the use of sound waves to destroy calcific tendons and ligaments.

I prefer preventing and rehabilitating injury through correcting neuromuscular inefficiencies and dysfunctional movement. The problem with the above treatments is that they are treatments. If an injury is caused by dysfunctional movement patterns and those patterns are not corrected it is likely the above treatments will simply serve as a Band-Aid because the true problem was not fixed.

If the person(s) responsible for the Boston Marathon bombing were looking to put fear in people, they chose the wrong population to target. Runners are the most stubborn and prideful athletes. No means yes, and yes means do more. If you took a graphical representation of marathon registration numbers from last night through the end of this week I would bet you’d find a spike, rather than a decline. Social media is exploding with a rise of the runner. A quote from a friends Facebook page: “If you’re trying to defeat the human spirit, marathoners are the wrong group to target” –unknown. Other movements like, wear a race shirt tomorrow, donations, and wear yellow and blue (Boston Marathon colors) have already begun. So, thank you runners for inspiring this blog post!

Mechanotransduction

You have an athlete with a stress fracture. The physician prescribes active rest and places the athlete in a non-weight bearing boot. Sound familiar? Suppose I told you the better option is to place some load on that bone and non-weight bearing is not recommended. Would you think I am nuts? Maybe I can convince you otherwise. Let me explain but, before you read the next paragraph and decide to leave the page, bear with me. What follows this introductory piece may provide insight to further understanding of injury pathophysiology and could revolutionize the future of rehabilitation science.

In January 2013 the Annals of Human Genetics published an article that demonstrated Achilles Tendinopathy is associated with gene polymorphism (Abrahams, et al., 2013). I am not a geneticist by any stretch of the imagination, so pardon my basic explanation. COL51A is a gene that encodes the development and organization of Type V collagen. Type V collagen is a collagen that is distributed in tissues as a component of extracellular matrix and composed of one pro alpha 2 (V) and two pro alpha 1 (V) chains. This collagen can be found in ligaments, tendons, and connective tissue. COL51A plays an integral role in development and maintenance of connective tissue. Abrahams, et al. (2013) demonstrated that polymorphisms occur in the COL51A gene causing altered structure of collagen resulting in tendionpathy. Continue reading

Knee Pain? Ignore it; Fix the Hip!

I have posted on this topic many, many times. Unfortunately, many still revert to antiquated rehabiltiation protocols. Thus, I feel compelled to keep talking about it.  If you or a client has knee pain focus on the hip, not the knee. There is so much data out there on linking decreased glute strength to knee pain. A weak or inhibited glute medius is unable to control femoral internal rotation and obligatory knee frontal plane motion.  These motions are a primary cause in knee pain – traumatic and acute. Today I discovered two, recently-published, systematic reviews to prove my point.

The first review examined 47 studies which looked at factors causing Patellofemoral Pain Syndromeknee_patella_intro01  (PFPS) (1). This review identified decreased muscle strength for hip abduction and hip external rotation as an important factor associated with the cause of PFPS. The pooled data also found increased Q-angle and sulcus angle to be factors – both of which have been linked to muscle imbalance.

The second systematic review was more specific by evaluating gluteal muscle activity – via EMG – and PFPS (2). The authors identified ten studies to be included in their review, with six of these studies considered to be high-quality and eight studies having a score of 8 or higher on the Downs and Black scale. The authors conclude there is moderate to strong evidence linking delayed or short Glute medius muscle activity to PFPS. The authors also state, “If gluteal muscle activation is delayed, frontal and transverse plane hip motion control may be impaired, leading to increased stress on the PFJ and subsequent symptoms associated with PFPS.”

Rehabilitation practitioners should note this when developing rehabilitation programs. Specifically targeting glute weakness and inhibition will limit hip internal rotation and obligatory knee frontal plane motion. Correcting faulty movement patterns will allow for optimal neuromuscular recruitment and joint kinematics, ultimately relieving or preventing pain.

If you are wondering which exercises will target the glute medius look at the study published in the recent JOSPT (3) and my recent blog titled “The Glute vs TFL Muscle Battle: Proper Exercise Selection to Correct Muscle Imbalance. The data represented in the JOSPT article demonstrate the bilateral bridge, unilateral bridge, side step, clam, squat and two quadruped exercises are best for activating the glute medius.

Are you ready to change your rehabilitation program?

References:

  1. Lankhorst NE, Bierma-Zeinstra, SMA, and van Middelkoop, M. Factors associated with patellofemoral pain syndrome: a systematic review.  Br J Sports Med.  2013;47:193–206.
  2. Barton CJ, Lack, S, Malliaras, P, and Morrissey, D. Gluteal muscle activity and patellofemoral pain syndrome: a systematic review. Br J Sports Med. 2013; 47:207–214.
  3. Selkowitz, DM, Beneck, GJ, and Powers CM. Which Exercises Target the Gluteal Muscles While Minimizing Activation of the Tensor Fascia Lata? Electromyographic Assessment Using Fine-Wire Electrodes. J Orthop Sports Phys Ther. 2013; 43(2):54-64.

The Glute vs TFL Muscle Battle: Proper Exercise Selection to Correct Muscle Imbalance

Reference:
Selkowitz, DM, Beneck, GJ, and Powers CM. Which Exercises Target the Gluteal Muscles While Minimizing Activation of the Tensor Fascia Lata? Electromyographic Assessment Using Fine-Wire Electrodes. J Orthop Sports Phys Ther. 2013; 43(2):54-64.

Overview and Introduction:
JandaSyndromesVladamir Janda revolutionized human movement dysfunction and rehabilitation when he described three compensatory movement patterns as a result of pattern overload and static posturing. Most musculoskeletal injuries are multifactorial, but more often than Janda’s described three compensation patterns – upper crossed syndrome, lower crossed syndrome and pronation distortion syndrome – are the key contributor to our pain complaints.

Since Janda introduced this topic research has continued to answer what and why questions surrounding these compensatory patterns. We have learned hypertonic / hypotonic muscles and the delicate interplay they have on integrated functional movement. Studies continue to show how these dysfunctional patterns lead to our most common injuries – PFPS, ITBS, Achilles tendinopathy, plantar fasciitis, epicondylopathy, biceps tendinosis, impingement syndromes, MTSS, etc.

As research evolves we continue to fine-tune our clinical decision making. For several years now rehabilitation journals have published articles linking a myriad of injuries to lower-crossed syndrome, gluteal inhibition, and over-activation of the tensor fasciae latae (TFL). We have learned that these should be a focal point in our rehabilitation techniques to resolve lower extremity overuse injuries. The article by Selkowitz, et al., in the Feb 2103 edition of JOSPT is unique and what I believe to be one of the most clinically relevant studies to be published in the last few months. I liked it so much I had to blog it.

Statement of the Problem:
A common descriptor associated with lower-crossed syndrome is femoral internal rotation and hip adduction. From a rehabilitation perspective we must enhance neuromuscular firing of hip abduction and external rotation. In addition we must inhibit over activity of hip adductors and hip internal rotators.

As a health care practitioner we understand the delicate interplay of functional anatomy. The problem is how do we inhibit a chronically hypertonic TFL while activating the hypotonic gluteal group if they both produce similar movements? It is a fine balance we must be cognizant of when designing rehabilitation programs.

This study examined which exercises elicit the greatest gluteal (medius / maximus) activation while minimizing activation of the TFL. This is exactly what we need to know when designing a rehabilitation program to target lower crossed compensatory patterns.

Study Methodology:
Electromyographic data of the gluteus medius and superior gluteus maximus was collected utilizing fine-wire electrodes on 20 healthy participants during the execution of 11 exercises.

Results:
Seven of the 11 exercises -bilateral bridge, unilateral bridge, side step, clam, squat and two quadruped variations – demonstrated statistically significant greater muscle activation in the gluteus medius and gluteus maximus when compared to the TFL. Side-lying hip abduction, hip hike, the lunge, and the step-up were either not significant or demonstrated higher TFL values compared to the gluteal group.

The authors ranked the exercises in order of highest gluteal to TFL ratios. Clam, side step, and unilateral bridge had the highest ratios, while lunge, hip hike, and squat had the lowest ratios.

Clinical Application of Data:
Altered arthrokinematics and muscle imbalances are a common cause of overuse injuries. Lower-crossed syndrome is a common compensatory pattern that is associated with hypertonicity of the hip flexors complex, which elicits altered reciprocal inhibition of the gluteal group. Targeting this dysfunctional pattern using proper exercise selection indicated here can prevent injuries, improve patient outcomes, and restore optimal function. When designing your program be sure to reference the material here to determine a proper rehabilitation program.

Limitations:
Studies are equivocal on reliability of surface EMG vs intramuscular. However, the authors cite using the method by Delagi and Perotto, which appears reliable. Still one has to question specificity and sensitivity to a minimal degree.

The participants were instructed on proper exercise technique. However, substitutions patterns are common in patients exhibiting muscle imbalance. Any slight deviation from proper technique can skew the data. I am curious how closely exercise technique was monitored and what occurred when deviation did occur.

Summary:
Like I said from the top, rarely do we have a published data with such clinical relevance. Studies that show how deep ultrasound penetrates a rats muscle are great, but clinically have little clinical utility. Data revealed here will guide decision making on proper exercise selection and ensure they are applying the proper strengthening exercise to specifically target the underactive glutes while avoiding the over active TFL. Kudos to the authors.

Treatment for Pelvic Rotation and Low Back Pain

Do you have a patient with chronic low back pain, pelvic pain or lateral hip pain? The problem could be an oft-overlooked Anterior Innominate Lesion, commonly referred to as Anterior Iliac Rotation. This malalignment is hard to identify unless the clinician is specifically evaluating for body alignment.

Simply described, anterior innominate is anterior / inferior rotation of the ASIS when compared to the contralateral ASIS. This unilateral rotational movement of is often a result repetitive movement patterns. Repetitive movement results in hypertonicity of hip flexors (primarily the rectus femoris and TFL), hypotonicity of the abdominals, hamstrings, and glutes, as well as increased laxity of the sacrotuberous ligament. The force coupling caused by the hyper/hypotonic structures yields the unilateral rotary movement of the pelvis.

The result is a chronic, dull achy pain that is unrelenting at times. Pain is typically felt across the entire low back. Focal tenderness upon palpation is commonly unremarkable. The patient may also have complaints of thoracic pain, lateral hip pain and potentially groin. Pain maybe exacerbated with athletic activity, or static postures such as prolonged sitting and standing.

As with many postural disorders, treatment for anterior rotation is best served through the use of manual therapy techniques. In my experience, there are two quick and easy treatments: muscle energy techniques (MET) and spray and stretch. Spray and stretch technique is a nice way to inhibit and elongate tonic musculature. Ischemic pressure massage to active trigger points of involved muscles followed the application of a vapocoolant spray, during a passive stretch works well. Although both treatment forms are effective, I prefer MET, as it is fast, effective, and incorporate a semi-functional component through contraction and relaxation of muscle.

When it comes to MET (or most manual therapy techniques for that matter) I often refer to anything by Leon Chaitow’s methods. In this particular instance, I have provided a video clip of a MET that can help both anterior and posterior pelvic rotation in one treatment session. I think the physiotherapists across the Atlantic do a great job of manual therapy, thus I chose a video that was made in the UK.

It is not uncommon to relieve patient pain with just one application of MET. For patients with significant malalignment this treatment may need to be performed twice daily for several weeks in conjunction with traditional functional rehabilitation designed to enhance neuromuscular efficiency.

So, if you have been a patient complaining of low back pain, be sure to observe for postural malalignment. You might find anterior innominate rotation. If so, you can utilize these techniques to resolve the problem quickly and restore optimal function.

Core Before or Core After?

I was recently asked by a colleague: Why does NASM recommend performing core exercises prior to SAQ and resistance exercises when most other organizations state to perform core at the end? It is a long-winded, highly-debatable question, so I decided to write a short blog on the topic providing my thoughts.

The theory of performing core exercise at the end of training is very valid and certainly has utility.The primary theory to performing core exercise after resistance training is fatigue. Resistance, reactive and SAQ training targets our prime movers which are predominately made of Fast Gylcolytic (FG) and Fast Oxidative Glycolytic (FOG) muscle fibers. These fibers are easily fatigued due to their avascular properties. Core musculature is rich in Slow Oxidative (SO) muscle fibers. High vascularity makes SO fibers resistant to fatigue secondary to the accessibility to oxygen.

A common fault with core training technique is allowing the prime movers – saturated with FG / FOG fibers – to dominate the SO dominant muscle fibers of the core. Subsequently, we are not properly working the core muscles, we are just training our prime movers to act as core stabilizers. During higher intensity exercise like SAQ, reactive, and resistance training the FG and FOG muscle fibers become fatigued. Thus, when we transition to core exercises, the fatigued prime movers are less likely to become dominant and will allow for the core musculature and SO dominant muscles to do there job. So the organizations that support this method are certainly not wrong.

Conversely, NASM has a completely different outlook on when to perform core exercises. By performing core exercise after flexibility and prior to SAQ, plyometric, or resistance exercise serves as a functional warm-up to stimulate the neuromuscular system and enhance neuromuscular efficiency during more intense exercise. By doing so, our neuromuscular system is prepared and ready for higher intensity exercise and can prevent unwanted motion of joints and prevent injury.

The thought process behind this is the increased neurological stimulation that occurs when performing core exercise. This increased neural stimulation is much like the neural response that occurs with post-activation potentiation (PAP). PAP operates on the principle that heavy muscle loading creates increased stimulation of the central nervous system, resulting in greater motor unit recruitment and subsequently force production (1, 2).

There are two theories behind PAP. The first states that maximal muscle contraction yields an increased phosphorylation of myosin. The increased phosphorylation causes actin and myosin binding to be more responsive to calcium ions released from the sarcoplasmic reticulum (3).  This enhances force muscle production at the structural level of muscle (4).  As a result, faster contraction rates develop (1).

The second theory behind PAP involves the Hoffmann Reflex (4). The Hoffman reflex is excitation of muscle spindle nerve fibers. Physiologically, PAP increases speed of H-reflex, thus increasing the firing rate to muscle (5). It is this rate coding, and the aforementioned  phosphorylation of myosin that the NASM model suggests occurs during and following core exercise.

By stimulating the core musculature, the core will be active during the core exercise and also be activated during higher intensity exercise. Subsequently, the core is working longer and it is helping prevent injury by enhancing neuromuscular efficiency during higher intensity exercise.

What do you think? Which method do you prefer? Personally, through research and exercise experience, I favor the NASM version, but that could easily be attributed to my work experience at NASM. Nonetheless, the question remains and I think it would be a great research study comparing the two variables. Any doctoral students looking for a project?

References:

  1. Chiu, L.Z., Fry, A.C., Weiss, L.W., Schilling, B.K., Brown, L.E., & Smith, S.L. (2003). Postactivation potentiation response in athletic and recreationally trained individuals. Journal of Strength and Conditioning Research. 17(4), 671-677.
  2. Rixon, K.P., Lamont, H.S., & Bemden, M.G. (2007). Influence of type of muscle contraction, gender, and lifting experience on postactivation potentiation performance. Journal of Strength and Conditioning Research, 21(2), 500-505.
  3. Kravitz
  4. Hamada, T., Sale, D.G., MacDougall, J.D., & Tarnopolsky, M.A. (2000a). Postactivation potentiation, muscle fiber type, and twitch contraction time in human knee extensor muscles. Journal of Applied Physiology, 88, 2131-2137.
  5. Hodgson, M., Docherty, D., & Robbins, D. (2005). Post-activation potentiation underlying physiology and implications for motor performance. Sports Medicine, 25 (7), 385-395.

Foot Center of Pressure Reduces Kinetic Chain Dysfunction and Chronic Pain

If you read my blog before you are well aware that I am a big proponent of identifying human movement dysfunction and correcting functional imbalances to reduce chronic pain, such as knee osteoarthritis (OA), patellofemoral pain syndrome (PFPS), and low back disorders such as sacroiliac dysfunction, facet arthropathy, or generalized lumbago.

A few years ago I read about a new neuromuscular technique called AposTherapy.  For those unfamiliar, AposTherapy corrects gait abnormalities by retraining muscles to adopt an optimal gait mechanics. The primary goal of AposTherapy is to correct the foot center of pressure (COP) during gait. This is done by wearing a unique, foot-worn biomechanical device. At the time, I heard good results about the use of AposTherapy, but data was too young to consider valid just yet or share-able, just yet.

Recently, when looking at functional rehabilitation techniques for chronic knee pain I came across an interesting study in the Journal of Biomechanics the evaluates the benefits of AposTherapy, to correct kinetic chain dysfunction responsible for the development of knee OA (1). The results of the study were significant. Following the intervention patients demonstrated significant reduction in knee adduction (valgus) moment (KAM). Several authors have demonstrated KAM to be a primary cause of knee OA, including Miyazaki, who noted KAM correlates with the progression of knee OA (2). In addition, patients who participated in AposTherapy demonstrated increased walking velocity, reduced pain, and improvement of functional living (1).

The foot-worn biomechanical device alters foot COP, allowing for proper kinetic chain alignment neuromuscular efficiency. Clark and Lucett, noted that dysfunction at one joint precipitates altered movement patterns, at adjacent joints, both proximally and distally (3). This is the foundation of AposTherapy. By correcting  foot COP during gait, altered joint mechanics up the kinetic chain are nullified and neuromuscular efficiency is enhanced. Overtime, strength gains occur allowing for optimal gait patterns. Sharma, stressed the role of neuromuscular ineffciency, suggesting that secondary to elevated joint stress with higher impact loads and altered joint mechanics facilitate the pathogenesis of the chronic joint disease (4).

Biomechanical interventions focusing on foot COP, neuromuscular development and agility, enhance functional ability, reduce pain and increase spatiotemporal patterns of gait (1).  Working knowledge of human movement dysfunction and human movement compensation patterns are prudent to health practitioners.  Health practitioners should emphasize and correct human movement dysfunction when treating clients with chronic joint pain such as and certainly not limited to knee OA, PFPS, SI pain, and other  low back disorders like facet arthropathy.  Training to enhance neuromuscular recruitment, force-coupling, as well as the correction of altered length-tension relationships and poor joint arthrokinematics will go far in reduction of pain, prevention of chronic pain, and improved functional outcomes.

What techniques do you implement to train for optimal neuromuscular efficiency?

References:

1. Haim, A, et al. Reduction in knee adduction moment via non-invasive biomechanical training: A longitudinal gait analysis study. J of Biomechanics. 45 (2012) 41–45.

2. Miyazaki, T., Wada, M., Kawahara, H., et al. Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Annals of the Rheumatic Diseases.  2002. 61, 617–622.

3. Clark, MA, and Lucett, SC. NASM Essentrials of Corrective Exercise Training. Lippincott, WIlliams and Wilkins. 2010.

4. Sharma, L., Dunlop, D.D., Cahue, S., et al. Quadriceps strength and osteoarthritis progression in malaligned and lax knees. Annals of Internal Medicine. 2003. 138, 613–619.

Postactivation Potentiation (PAP)

For years there has been a gap between performance enhancement and injury management. Strength coaches fail to address rehabilitation  and injury prevention during performance training whereas health care practitioners (ATs, PTs, OTs) fail to address performance training during injury management. There are some who continually seek to merge the two disciplines, by utilizing the unique training principles from each side. I am not saying ALL fail to bridge the gap, but it certainly is the majority.  Health care practitioners could be a bit more boundaryless and integrate performance enhancement concepts and protocols into injury management programming. One method we can use is Postactivation Potentiation or (PAP). Continue reading