Category Archives: Rehabilitation

Treatment for Pelvic Rotation and Low Back Pain

Do you have a patient with chronic low back pain, pelvic pain or lateral hip pain? The problem could be an oft-overlooked Anterior Innominate Lesion, commonly referred to as Anterior Iliac Rotation. This malalignment is hard to identify unless the clinician is specifically evaluating for body alignment.

Simply described, anterior innominate is anterior / inferior rotation of the ASIS when compared to the contralateral ASIS. This unilateral rotational movement of is often a result repetitive movement patterns. Repetitive movement results in hypertonicity of hip flexors (primarily the rectus femoris and TFL), hypotonicity of the abdominals, hamstrings, and glutes, as well as increased laxity of the sacrotuberous ligament. The force coupling caused by the hyper/hypotonic structures yields the unilateral rotary movement of the pelvis.

The result is a chronic, dull achy pain that is unrelenting at times. Pain is typically felt across the entire low back. Focal tenderness upon palpation is commonly unremarkable. The patient may also have complaints of thoracic pain, lateral hip pain and potentially groin. Pain maybe exacerbated with athletic activity, or static postures such as prolonged sitting and standing.

As with many postural disorders, treatment for anterior rotation is best served through the use of manual therapy techniques. In my experience, there are two quick and easy treatments: muscle energy techniques (MET) and spray and stretch. Spray and stretch technique is a nice way to inhibit and elongate tonic musculature. Ischemic pressure massage to active trigger points of involved muscles followed the application of a vapocoolant spray, during a passive stretch works well. Although both treatment forms are effective, I prefer MET, as it is fast, effective, and incorporate a semi-functional component through contraction and relaxation of muscle.

When it comes to MET (or most manual therapy techniques for that matter) I often refer to anything by Leon Chaitow’s methods. In this particular instance, I have provided a video clip of a MET that can help both anterior and posterior pelvic rotation in one treatment session. I think the physiotherapists across the Atlantic do a great job of manual therapy, thus I chose a video that was made in the UK.

It is not uncommon to relieve patient pain with just one application of MET. For patients with significant malalignment this treatment may need to be performed twice daily for several weeks in conjunction with traditional functional rehabilitation designed to enhance neuromuscular efficiency.

So, if you have been a patient complaining of low back pain, be sure to observe for postural malalignment. You might find anterior innominate rotation. If so, you can utilize these techniques to resolve the problem quickly and restore optimal function.

Foot Center of Pressure Reduces Kinetic Chain Dysfunction and Chronic Pain

If you read my blog before you are well aware that I am a big proponent of identifying human movement dysfunction and correcting functional imbalances to reduce chronic pain, such as knee osteoarthritis (OA), patellofemoral pain syndrome (PFPS), and low back disorders such as sacroiliac dysfunction, facet arthropathy, or generalized lumbago.

A few years ago I read about a new neuromuscular technique called AposTherapy.  For those unfamiliar, AposTherapy corrects gait abnormalities by retraining muscles to adopt an optimal gait mechanics. The primary goal of AposTherapy is to correct the foot center of pressure (COP) during gait. This is done by wearing a unique, foot-worn biomechanical device. At the time, I heard good results about the use of AposTherapy, but data was too young to consider valid just yet or share-able, just yet.

Recently, when looking at functional rehabilitation techniques for chronic knee pain I came across an interesting study in the Journal of Biomechanics the evaluates the benefits of AposTherapy, to correct kinetic chain dysfunction responsible for the development of knee OA (1). The results of the study were significant. Following the intervention patients demonstrated significant reduction in knee adduction (valgus) moment (KAM). Several authors have demonstrated KAM to be a primary cause of knee OA, including Miyazaki, who noted KAM correlates with the progression of knee OA (2). In addition, patients who participated in AposTherapy demonstrated increased walking velocity, reduced pain, and improvement of functional living (1).

The foot-worn biomechanical device alters foot COP, allowing for proper kinetic chain alignment neuromuscular efficiency. Clark and Lucett, noted that dysfunction at one joint precipitates altered movement patterns, at adjacent joints, both proximally and distally (3). This is the foundation of AposTherapy. By correcting  foot COP during gait, altered joint mechanics up the kinetic chain are nullified and neuromuscular efficiency is enhanced. Overtime, strength gains occur allowing for optimal gait patterns. Sharma, stressed the role of neuromuscular ineffciency, suggesting that secondary to elevated joint stress with higher impact loads and altered joint mechanics facilitate the pathogenesis of the chronic joint disease (4).

Biomechanical interventions focusing on foot COP, neuromuscular development and agility, enhance functional ability, reduce pain and increase spatiotemporal patterns of gait (1).  Working knowledge of human movement dysfunction and human movement compensation patterns are prudent to health practitioners.  Health practitioners should emphasize and correct human movement dysfunction when treating clients with chronic joint pain such as and certainly not limited to knee OA, PFPS, SI pain, and other  low back disorders like facet arthropathy.  Training to enhance neuromuscular recruitment, force-coupling, as well as the correction of altered length-tension relationships and poor joint arthrokinematics will go far in reduction of pain, prevention of chronic pain, and improved functional outcomes.

What techniques do you implement to train for optimal neuromuscular efficiency?

References:

1. Haim, A, et al. Reduction in knee adduction moment via non-invasive biomechanical training: A longitudinal gait analysis study. J of Biomechanics. 45 (2012) 41–45.

2. Miyazaki, T., Wada, M., Kawahara, H., et al. Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Annals of the Rheumatic Diseases.  2002. 61, 617–622.

3. Clark, MA, and Lucett, SC. NASM Essentrials of Corrective Exercise Training. Lippincott, WIlliams and Wilkins. 2010.

4. Sharma, L., Dunlop, D.D., Cahue, S., et al. Quadriceps strength and osteoarthritis progression in malaligned and lax knees. Annals of Internal Medicine. 2003. 138, 613–619.

Postactivation Potentiation (PAP)

For years there has been a gap between performance enhancement and injury management. Strength coaches fail to address rehabilitation  and injury prevention during performance training whereas health care practitioners (ATs, PTs, OTs) fail to address performance training during injury management. There are some who continually seek to merge the two disciplines, by utilizing the unique training principles from each side. I am not saying ALL fail to bridge the gap, but it certainly is the majority.  Health care practitioners could be a bit more boundaryless and integrate performance enhancement concepts and protocols into injury management programming. One method we can use is Postactivation Potentiation or (PAP). Continue reading

15 Minute Rehabilitation: It’s Time to Unplug

While working as an athletic trainer I was frustrated and furious with the constant flow of athletes ‘needing’ certain treatment. I was tired of students and support staff hooking athletes up to every biophysical modality in the athletic training room. Why? They had no clue – it felt good to the athlete, it ‘worked’, it was easy, the coach said to – my blood beginning to boil.

It seemed every injury for all athletes was treated by the wonderful benefits of electrical stimulation. After a quick evaluation the injured body part is surrounded by electrodes and covered with a comfy hot or cold pack. For 20 minutes the athlete sat there with a special tingly, prickly feeling that gives those in pain a warm fuzzy feeling. As a health care provider there is nothing easier than slapping on a few electrodes and walking away for 20 minutes; it’s easy and clients love it. I must admit that I have fallen victim to the persuasive effect of e-stim as both an athlete and health care provider. But it was time to unplug. The overuse of modalities coupled with the under usage of manual therapy and rehabilitation was sickening. So what did I do?

I unplugged it all. I took all of the modalities and put them in one room with one table. It was not to be used unless a valid reason existed to do so. Holy s***, did I make some people mad. Instantly, coaches and athletes, became health care experts saying it was needed. But for the fellow athletic trainers – they understood. It made them learn reasons why to use modalities. It also help them look at the treatment of injuries in another way. This method also enhanced their ability to identify and correct common human movement dysfunction than causes pain.

Before I go further and before those in support of  modality usage start throwing data at me, stop. E-Stim (along with the other biophyscial modalities) is a versatile modality, has few contraindications and is a quick easy way to reduce pain in most clients. For this reason e-stim is often the first tool of choice.  The effectiveness and subsequent overuse of e-stim, is secondary to pain relief. A structure called the substantia gelatinosa (SG), lies in the IV Laminae of the dorsal horn in the spinal cord. This structure is where nociceptive (pain) fibers terminate and decisions with regards to how pain should be handled are determined. Also terminating in the SG are A Delta fibers (sensory fibers). E-stim has several modulations, but the most common is for a theory called “Gate Control Theory”. Essentially, electrical impulses from e-stim therapy bombard the SG through the A Delta Sensory fibers and over-ride the nociceptive fibers and ‘turn-off’ pain. The pain relief can last from minutes to several hours.

Unfortunately, all too often, athletic trainers try to control pain rather than fix the problem. Rather than spending 20 minutes turning off pain, why not allocate the time to long-term pain relief and correcting dysfunction? Why not spend 20 minutes correcting a muscle imbalance, which will lead to lifelong change and keep athletes out of your athletic training room? All you are doing is putting a band-aid on a problem, unfortunately you have to keep putting that band-aid on everyday for the entire season. I said it before and will say it again – Athletic Trainers need to transition from triage to rehabilitation and optimizing functional movement. However, I understand the problem: it is a time crunch. Athletic training rooms are vastly understaffed – making it difficult to dedicate 20 minutes of rehabilitation time to one athlete, when 3oo are lined up at the door. So we have a time crunch, but there is a solution…

Almost all injuries we see in the athletic training room are a result of:  altered length tension relationships, altered arthrokinematics, altered neuromuscular recruitment. Collectively, these issues are what makes up human movement dysfunction. You name the injury – tendonitis, ACL tears, PFPS, fasciitis, MTSS, impingement, rotator cuff pathologies, you get the point – can be linked back to human movement dysfunction. The good is that human movement dysfunction is identifiable, preventable and correctable. The better is that the strategies to correct human movement dysfunction can be done in less than 15 minutes per day.

Yes, I said it – you can perform a 15 minute rehabilitation session. I presented on this topic at the NATA District 10 and District 2 conference and even did a few customized workshops. A colleague presented on the topic at the June 2012, NATA conference. Imagine correcting a problem, preventing injury, or rehabilitating an athlete in 15 minutes per day. That would be better than slapping on a pair of electrodes and setting up hi-frequency biphasic sensory-level stimulation. You will fix the problem and reduce pain. How you ask?

As I said above, human movement dysfunction is often composed of three problems, all which are identifiable during human movement assessments. The assessments will indicate where human movement impairments exist. But lets say for example we have a patient with patellar tendonitis, we would likely see functional impairments somewhere along the lower extremity. Below is a sample program I would do in 15 minutes.

Decrease neurological drive to hypertonic tissue – 3 minutes 

Exercise: Self-Myofascial Release or Manual therapy

  • Gastrocnemius/Soleus – 60 seconds
  • Adductors – 60 sec
  • TFL/IT-band – 60 sec

Lengthen hypertonic muscle or joint tissue – 3 minutes

Exercise: Static stretch or joint mobilization

  • Gastrocnemius/Soleus Stretch – 1 set @ 30 sec
  • Kneeling Hip Flexor Stretch – 1 set @ 30 sec
  • Adductor stretch – 1 set @ 30 sec
  • Posterior joint mobilizations at the ankle – 90 seconds

Increase neurological drive to hypotonic tissue – ~ 6 minutes

Exercise: Isolated Strengthening or positional isometrics

  • Resisted Ankle Dorsiflexion – 2 sets x 15 reps (slow) (2 minutes)
  • Resisted Hip Abduction and External Rotation- 2 sets x 15 reps (slow) (2 minutes)
  • Resisted Hip Extension – 2 sets x 15 reps (slow)  (2 minutes)

Integrated Dynamic Functional Motion – ~ 3 minutes

Exercise: Integrated movements

  •  Ball Squats w/Resistance Band Around Knees – 2 sets x 15 reps (slow)

Note this is just a sample program. In the above instance I assumed the client had limited ankle dorsiflexion and muscle imbalance at the hip musculature. The specific human movement impairment will be client and injury dependent. That said, you can follow the same formula and perform rehab in the same amount of time that it takes to perform e-stim. Too often we use the time crunch as an excuse for our failure to perform due diligence as health care practitioner. We have a job – that is to keep athletes healthy. Let’s choose the path that works – not the band-aid.

 

The Importance of Pitch Count

Image Courtesy of: Jeff Chiu/Associated Press

As a college athlete Stephen Strasburg was one of the most sought after pitchers in the history of baseball. He destroyed opposing batters with a ridiculous fast baseball and off-speed pitches that seemed to roll off of a table. In 2009, he was the number 1 overall draft pick by the Washington Nationals. Soon after he blitzed through the minor leagues with a stat line that made fantasy baseball owners drool. In his major league debut he recorded 14 strikeouts, 0 walks and 2 earned runs. This Superman was real and he had arrived. However, this Superman also had his own kryptonite – the Ulnar Collateral Ligament.

In August, 2010, the Nationals announced that Stephen suffered a torn Ulnar Collateral Ligament (UCL) and would undergo surgery. Recovery from this surgery is at least one year. He was able to come back and finish off the 2011 season, in a limited fashion while in the minor leagues. Finally, at the start of the 2012 season he came back to the big leagues. So far all is well in 2012. He is arguably the most dominant pitcher in MLB. But his time will end in just a few days. Continue reading

Exercise as Medicine: Exercise Reduces Nerve Related Pain

How many of you suffer or know someone who suffers from chronic nerve related (neuropathic ) pain? Some of the most common types include: sciatica, carpal tunnel syndrome, radiculopathy/itis, stenosis, migraines, compression syndromes, or peripheral neuropathy. Now, how many of these individuals are stuck taking medication like; antidepressants, anticonvulsants, or painkillers like opiates or non-steroidal anti-inflammatory medications?

I have witnessed several incidents of individuals suffering from chronic pain getting stuck in the vicious cycle of medication. Take one medication to relieve inflammation, another to reduce pain, another to depress nerve action, then compound this with taking additional medications to control the side effects (i.e. acid reflux, sleep deprivation, constipation, etc).

I have always been in favor of the holistic approach to health. Let the body heal itself with exercise as medicine, diet or natural remedies. Earlier this year a study was published in Anesthesia and Analgesia, which talks about the benefit of exercise as medication for nerve related pain. After reading the article I had to share, even if it is a laboratory study.
The study examined rats with neuropathic pain then put the rats through exercise programming. The results demonstrate significant reductions in neuropathic pain following exercise. Exercise reduced characteristic of typical neuropathic pain. In addition, the exercise significantly reduces the expression of inflammatory proteins and neuropathic pain. Cytokines are a common cause of chronic inflammation and often neuropathic pain is a result of chronic inflammation. Exercise can reduce cytokine release and chronic inflammation.

Don’t get me wrong I appreciate Western Medicine. However, where have we gone? We have turned our back on the easiest and most beneficial thing we can do for our body – exercise. Start exercising and stop the dependency on drugs.

Reference:
Yu-Wen Chen, Yung-Tsung Li, Yu Chung Chen, Zong-Ying Li, Ching-Hsia Hung. Exercise Training Attenuates Neuropathic Pain and Cytokine Expression After Chronic Constriction Injury of Rat Sciatic Nerve. Anesthesia & Analgesia. 114 (6): 2012.

Osteoporosis 101

Several physiological and anatomical changes occur within the human body as individual’s age. One of the most prevalent changes occurs in the musculoskeletal system. Bone mass declines with age similar to muscle mass. Bone mass peaks around 30 years of age and then gradually declines. The cause of bone loss is multifactorial, including inactivity, changes in hormone levels, and improper nutrition. In regards to physical activity, the age-associated decline in muscular strength parallels the loss of bone mass (1). Research shows a significant risk factor for osteoporosis is physical inactivity.

Osteoporosis is a chronic disease characterized by a thinning and weakening of bones (2). Osteoporosis is determined as having a bone mineral density more than 2.5 standard deviations below the young adult mean value (3). Once bone mineral density reaches such a low-level, any imposed stress or force may lead to a fracture.

The most common fracture sites for people with osteoporosis include the wrist, thoracic spine, and proximal femur. This is due to a greater proportion of trabecular bone, which is more fragile when calcium is lost. Here are some interesting statistics in regards to osteoporosis:

  • Approximately 10 million Americans over the age of 50 have osteoporosis.
  • Almost 35 million Americans over the age of 50 have osteopenia, which is a bone density lower than normal and can lead to osteoporosis.
  • 40% of Caucasian women will fracture a wrist, spine, or hip in their lifetime.
  • Almost 20% of hip fractures lead to permanent disability.
  • By 2020, half of all Americans over the age of 50 will be at risk for fracture due to weak bones (4).

As a living tissue, bone is constantly in a state of flux. Specialized bone cells called osteoblasts mediate the addition of calcium by adding to the bone matrix, and other cells called osteoclasts mediate the removal of calcium from the bone matrix. As we age, bone construction slows and bone degeneration accelerates, leading to osteoporosis. There are several risk factors for osteoporosis which include; history of fractures due to insignificant trauma, family history of osteoporosis, postmenopausal females, men over the age of 70, history of smoking at least one pack of cigarettes per day, and low body mass.

Unlike skeletal muscle, structural changes to bone tissue lead to very few functional decrements. That said health and fitness professionals must keep bone loss in mind especially when working with older adults who have Osteoporosis. To mitigate the loss of bone with age, older adults should engage in strategies that will have a protective effect on bone mass. The force of gravity imposes stress on bones. Gravity gives weight to an object due to the acceleration of that object toward the center of the earth. The force the skeleton is exposed to when absorbing ground reaction forces causes the skeleton to be loaded and will increase bone integrity and strength. Lifting weights will impose a stress to bone due to the articulation of the muscle, fascia, and bone.

According to research weight-bearing exercise with significant loading of bone helps to preserve bone mass in older adults (5). High-intensity resistance training with heavy loads relative to maximal strength also shows an increase in bone mineral density in older adults, while moderate intensity resistance training shows a smaller effect (6).

References:

  1. Burr DB. Muscle strength, bone mass, and age-related bone loss. J Bone Miner Res. 1997;12(10):1547-1551.
  2. Liu H, Paige NM, Goldzweig CL, et al. Screening for osteroporosis in men: a systematic review for an American College of Physicians guideline. Ann Intern Med. 2008;148(9):685- 701.
  3. Kanis J, Melton LJ, Christiansen C. et al. The diagnosis of osteoporosis. J Bone Miner Res. 1994; 9: 1137-1141.
  4. Center for Science in the Public Interest. Nutrition Action Health Newsletter. 2005;32(3)., Centers for Disease Control and Prevention, 2008.
  5. Kelley GA, Kelley KS, Tran ZV. Exercise and BMD in men: a meta-analysis. Am J Phys Med Rehabil. 2001; 80: 65-77.
  6. Cussler EC, Lohman TG, Going SB, et al. Weight lifted in strength training predicts bone change in postmenopausal women. Med Sci Sports Exerc. 2003; 35(1): 10-17.

Improve Your Golf Game and Reduce Injury

Injuries in golf occur as they do during participation in any athletic orientated activity. Research indicates injuries in golf relate to functions of age, skill level, and frequency of play. According to Gosheger et al., over 80% of golf-related injuries are due to overuse (1). The most common injury experienced by professional golfers is low-back dysfunction. Low-back golf injuries can be chronic in nature due to poor swing mechanics, poor conditioning, or overuse. Research has shown that golfers who have low-back pain demonstrate a decrease in range of motion for hip internal rotation on the lead leg, decreased lumbar extension, decreased activation and/or timing of the abdominal obliques, spinal erectors, and knee extensors (2-4). A common low back disorder of golfer’s is sacroiliac joint (SIJ) dysfunction.

When loads are transferred between the trunk and legs, the flat surfaces of the pelvis bones (sacrum and ilium) make the SIJ subject to considerable forces. If SIJ stability is not maintained, loads cannot be transferred efficiently between the trunk and legs, which may result in abnormal loading joint tissue and the development of pain (5). The transverse abdominis and internal oblique muscles play a significant role in resisting shear loads across the SIJ and maintaining stability (5). Proper execution of an abdominal drawing-in maneuver during performance should enhance the stability of the SIJ joint and allow for the most efficient transfer of forces between the trunk and legs.

Exercise is believed to be a vital component in preventing the occurrence of low-back pain and injury. What is unclear, however, is the type of exercises that should be performed as part of a low-back pain prevention and rehabilitation program. Liddle, et al. concluded that strengthening exercises targeting the lumbar spine, lower limbs, and abdominal muscles were the predominant exercises performed in successful exercise programs that decreased pain and improved function (6).  Conversely, Hayden, et al concluded in a systematic review that programs that strengthened the trunk stabilizing muscles were most effective. A separate meta-analysis, (7) indicated that the most effective programs consist of a supervised, individually designed set of stretching and strengthening exercises.

I am in agreement with the observations and recommendations from the scientific literature noted above. The best approach to developing a low-back injury prevention program includes a variety of inhibitory and lengthening exercises aimed at improving flexibility of tight and overactive muscles, isolated strengthening exercises for weak and inhibited muscles, and improving neuromuscular control through integrated exercise is recommended.

Golfer’s with SIJ dysfunction commonly have overactive and underactive muscles. The overactive muscles include the Tensor Fascia Latte, IT Band, Hip adductors and Piriformis. Underactive muscles include the glute medius and minuimus as well as intrinsic core stabilizers (multifidus, transverse abdominus and obliques). Inhibiting and improving flexibility of the overactive muscles followed by strengthening of the underactive muscles will help reduce or prevent low-back pain and could improve your golf swing.

References:

1. Gosheger G, Liem D, Ludwig K, Greshake O, Winkelmann W. Injuries and overuse syndromes in golf. Am J Sports Med. 2003;31(3):438-443.

2. Horton JF, Lindsay DM, Macintosh BR. Abdominal muscle activation of elite male golfers with chronic low back pain. Med Sci Sports Exerc. 2001;33(10):1647-1654.

3. Lindsay D, Horton J. Comparison of spine motion in elite golfers with and without low back pain. J Sports Sci. 2002;20(8):599-605.

4. Vad VB, Bhat AL, Basrai D, Gebeh A, Aspergren DD, Andrews JR. Low back pain in professional golfers: The role of associated hip and low back range-of-motion deficits. Am J Sports Med. 2004;32(2):494-497.

5. Snijders CJ, Ribbers MT, de Bakker HV, Stoeckart R, Stam HJ. EMG recordings of abdominal and back muscles in various standing postures: validation of a biomechanical model on sacroiliac joint stability. J Electromyogr Kinesiol. 1998; 8:205-14.

6.  Liddle SD, Baxter GD, Gracey JH. Exercise and chronic low back pain: what works? Pain. 2004; 107:176-90.

7. Hayden JA, van Tulder MW, Malmivaara A, Koes BW. Exercise therapy for treatment of non-specific low back pain. Cochrane Database Syst Rev. 2005:CD000335.

Women are Wimps!!

STOP! Before you start throwing knives at my head I don’t really think women are wimps. If I did my wife would be waiting for me when I get home to prove me wrong. In fact, it is quite the opposite. Women have demonstrated continued increase in sports endeavors and are much faster, more aggressive and powerful than in past decades. However, secondary to the increased participation in sport, women are sustaining many more injuries.

Females between the ages of 15-25 years are most often injured, with the majority of these injuries are to the anterior cruciate ligament (ACL).  Females are 2-5 times more likely than males to sustain an injury to the ACL. This injury is primarily noted in basketball and soccer, but is still prevalent in many other sports such as volleyball, softball and gymnastics.  Women over the age of 25 are also more susceptible to recreational sporting injuries compared to males.  Many of these injuries are also musculoskeletal in nature, such as ankle sprains, shoulder tendinopathy, and chronic knee pain such as chondromalacia, PFPS and ITB Syndrome. Looking at the glass half-full though,most of these injuries can be prevented with correction of movement dysfunction.

With the increased participation in sport and the commonality of musculoskeletal injuries it is prudent to understand typical movement dysfunction patterns that bring about these injuries.  Secondary to genetics, body morphology and muscle recruitment females are susceptible to lower extremity impairment syndrome.

Lower extremity impairment syndrome is a combination of muscle imbalances, joint dysfunction, and poor muscle recruitment patterns from the low back to the foot. The impairment syndrome can be characterized by foot pronation, knee valgus, femoral internal rotation, and lordosis at the low back.  When performing functional activities, such as running or cutting, these characterizations are amplified. Ultimately, this leads to ACL tears or the aforementioned chronic pain syndromes.

The good news is these poor biomechanical patterns can be corrected following focused rehabilitation techniques designed to improve muscle synergy as well as joint mechanics. Many studies have been done to show a significant reduction in the incidence of injuries, such as ACL tears, by correcting these impairments. If you are having chronic pain in the lower extremity, it might be a result of lower extremity impairment. This is a good thing, because it can be corrected.

Prevent Dysfunctional Movement by Improving Ankle Mobility – A Research Review of Manual Therapy Techniques

Topic Overview:

A single joint with altered arthrokinematics can precipitate a kinetic chain domino effect that will wreck havoc on functional human movement.  One such joint is the ankle, where altered arthrokinematics has been linked to several forms of human movement dysfunction and subsequent musculoskeletal injury. Specifically, limited ankle dorsiflexion, has been associated with patellar tendionopathy, ipsilateral gluteus medius weakness, plantar fasciitis, medial tibial stress syndrome, contralateral shoulder pathologies, sacroiliac joint dysfunction, recurrent ankle sprains, chondromalacia, ACL tears, Iliotibial band syndrome, increasing frontal plane motion of the knee, external snapping hip syndrome and osteitis pubis (just to name a few).  In addition to the aforementioned injuries athletes ware at risk of significant performance declines in overall power, agility, and speed.  I am not saying that these are all caused from limited ankle dorsiflexion, but I am saying that limited ankle dorsiflexion can cause these issues.

These issues can create a huge headache for the athlete, health care practitioner, personal trainer or performance coach. So, the question is what can we do that to prevent or treat these dysfunctional patterns or injuries? Simple, increase ankle dorsiflexion. But how? There are several treatment methods so I began thinking what is the single best way to improve ankle dorsiflexion; static stretching, manual therapy, soft tissue release, dynamic flexibility? I could come up with only one solid, and universal one stop treatment option – manual therapy, specifically Movement with Mobilization (MWM). So I found a good research article to review that talks about MWM and the effect it has on ankle dorsiflexion.

Complete Reference: Vicenzino B, Branjerdporn M, Teys P, Jordan K. Initial Changes in Posterior Talar Glide and Dorsiflexion of the Ankle After Mobilization With Movement in Individuals With Recurrent Ankle Sprain. J Ortho Sports Phys Ther Jul 2006;36(7):464-71.

Introduction to the Study:

Mobilization with Movement  (MWM) techniques are commonly utilized to improve joint range of motion and reduce pain. Recent evidence indicates posterior glide of the talus and ankle dorsiflexion is deficient in patients suffering from recurrent ankle sprains. Clinicians have used MWM techniques as an effective tool to increase posterior talar glide and increase talocrural dorsiflexion. The purpose of this study is to evaluate effectiveness of two MWM techniques (weight-bearing and non-weight bearing) for treatment of recurrent ankle inversion ankle sprains.

Study Limitations:

  • Imaging studies have not been done to validate assessment of posterior talar glide.
  • Age range was limited to University’s student population age range of 18-27.
  • Time from injury only  9.4 months (mean) since most recent injury

Methods:

Subjects:

  • 16 subjects (8 male, 8 female) age 18-27 from University of Queensland student population. Subjects must have history of recurrent unilateral ankle sprains, must not have had injury on contralateral side and must not have had injury within the past 6 months.

Dependent Variables:

  • Posterior Talar Glide – Posterior glide was applied while passively dorsiflexing at the ankle and flexing the knee.  Posterior talar glide measured with use of tibial inclinometer.
  • Weight-Bearing Ankle Dorsiflexion – Standing lunge until anterior knee touches wall. Measurement taken via tape measurement of toe to wall distance was taken.

Independent Variables:

  • Weight Bearing  Mobilization with Movement (MWM-WB)
  • Non-Weight Bearing Mobilization With Movement (MWM-NWB)
  • Control Group               

Procedures:

  • Randomized, double-blind, repeated-measures, cross over control design.

Statistical Analysis:

  • Three repeated trials of posterior talar glide and dorsiflexion taken pre and post treatment.
  • Omnibus 3×2 repeated-measures ANOVA
  • Paired t tests to determine pretreatment differences of affected and unaffected limbs for intrastudy use.

Results:

  • Pretreatment:
    • Posterior Talar Glide – 2.4° for the affected side and 6.3° for unaffected side.
    • Dorsiflexion – 4.2° affected side and 6.4° unaffected side.
  • Post treatment :
    • Posterior talar glide increased to 4.0° or 55% following MWM-WB.
    • Posterior talar glide increased to 4.1° or 50% following MWM-NWB.
    • Dorsiflexion increased to 4.8° or 26% following MWM-WB.
    • Dorsiflexion increased to 4.8° or 26% following MWM-NWB.
    • Control group increased to 3.3° or 17% following MWM-WB
    • Control group increased to 4.4° or 9% following MWM-NWB

Conclusion:

Overall, both weight-bearing and non-weight-bearing MWM demonstrated significant positive effectiveness for improving posterior talar glide and ankle dorsiflexion. Maximum possible effect (MPE) for posterior talar glide utilizing Weight bearing MWM and non weight-bearing MWM was 55% and 50% respectively. MPE for ankle dorsiflexion was 26% for both weight-bearing and non-weight bearing MWM.  There was not a significant difference when comparing weight bearing and non-weight bearing MWM.

If you are an athlete, health care practitioner, personal trainer or performance coach and think that your issue might be associated with limited ankle mobility seek out a qualified practitioner. They will be able to identify if dorsiflexion limitations exist and will be able to treat that limitation properly and restore proper function.