Tag Archives: Janda

Low Back Pain in Runners: In a Battle of Muscle Supremacy, Evil Prevails

Introduction:Chronic-back-pain-image

When we think of running injuries we immediately think lower extremity, IT Band syndrome, Patellofemoral Pain Syndrome, Achilles Tendinopathy, Medial Tibial Stress Syndrome, Plantar Fasciitis, and the like.  However, one of the most common and debilitating injuries in runners is low back pain.  So why are runners so at risk of developing low back pain? Most musculoskeletal injuries are multifactorial, but more often than not many chronic injuries result from underlying movement dysfunction.

Vladamir Janda (1928-2002) revolutionized human movement dysfunction and rehabilitation in 1979 when he described three compensatory movement syndromes.  These syndromes were a result of pattern overload (i.e. running) and static posturing. Janda recognized that certain muscles were prone to weakness while others were overactive. He continually investigated these movement syndromes and later learned that the muscle imbalances were systematic, predictable, involved the entire body, and a common cause of injury. Continue reading

Simple Stretching Tips to Correct Common Movement Dysfunction

Vladamir Janda revolutionized human movement and rehabilitation when he described three compensatory movement patterns as a result of pattern overload and static posturing.  Since Janda’s introduction we have continued to learn about hypertonic / hypotonic muscles and the delicate interplay they have on integrated functional movement. Static stretching helps correct dysfunctional movement by elongating shortened tissue. Unfortunately, the manner in which many stretches are performed does not target tissue appropriately. Continue reading

Shin Splints 101

This blog post is long overdue. I have had countless people – friends, family members, athletes, clients – all ask me about shin splints. OK, before the Athletic Trainers, Physicians, PTs and other health care providers jump down my throat. Yes, shin splints is a junk term. I am talking about MTSS. I understand this, but the people you treat know them as MTSS, so relax. What are they? How can I get rid of them? Can they be prevented? Despite being one of the most common athletic injuries, recreational or competitive, shin splints are easily treatable and very preventable. Too often sufferer’s deal with the pain and never fix the problem. My goal with this blog is to provide tips to fix the problem and resolve shin splint pain.

Shin splints, or Medial Tibial Stress Syndrome (MTSS), is a chronic injury typically described as dull-ache on the medial, mid-to-lower-third portion of the lower leg. Pain is common during or after activity. In severe cases pain may last for several hours after activity and occasionally the individual will experience nighttime throbbing in the lower leg.

The pain from MTSS is attributed to irritation of the periosteum – a saran wrap like covering around bone – or a stress reaction to the underlying bone. Repetitive pounding or muscle pulling from these structures precipitates the injury. Popular belief is that shin splints are due to poor shoes, training intensity, and training surfaces. However, a critical review article written by Moen, Tol, et al., published in 2009 Sports Medicine found this was not the case. MTSS is often caused by poor joint movement and muscle imbalance.  These movement patterns and muscle imbalances are easily identifiable. The best part is that you can fix these problems at home by following a simple flexibility and strengthening program.

IMG_2285

Blue lines illustrate normal hip-knee-ankle-foot alignment.
Red Lines illustrate femoral and tibial adduction and foot external rotation.
Green arrows show knees caving in and foot arch flattening.

First, let’s see if you have these movement dysfunctions. Observe yourself (in a mirror) walking or doing repeated squats. Do you see one or more of these four things: hips in, knees in, feet flatten, or toes point out? You may have one or all of these patterns; some may be extremely pronounced or could be very subtle. The image here shows a moderate to severe movement. If you observe this, even to the slightest degree, you are at risk for developing shin splints. Overtime, these movement patterns create a muscle imbalance, where some muscles become overactive and some become underactive.

Using the above figure as an example, here are the typical overactive and underactive muscles we would see in a person with shin splints or with these movement patterns.

OVERACTIVE

UNDERACTIVE

Hip Flexors and Tensor Fascia Latae Gluteal  Group (Maximus, Medius)
Lateral calf (lateral gastrocnemius / soleus) Medial Gastrocnemius
Groin muscles (anterior adductor complex) Anterior and Posterior tibialis
Biceps Femoris Medial Hamstrings

Our goal is simple, turn-off the overactive and turn-on the underactive; simple as that. Below is a basic 3-step program that can help correct this issue, step 1 -Turn-off, step 2 – elongate, and step 3 – turn-on. This program can be done daily and would take no longer than 30 minutes from start to finish. Here is what a basic program would look like.

Step 1: Turn-off the overactive muscles using self-myofascial release

  • Gastrocnemius/Soleus
  • Adductors
  • TFL/IT-band
  • Hip Flexors

Foam rolling is the best way to do this if you go at it alone. If you have a  qualified therapist, manual release of these muscles will do the trick. When foam rolling, roll each muscle for 90 seconds and hold tender areas for 20-30 seconds. A YouTube playlist I created, provides good examples and tips on how to perform these techniques.   

Step 2 – Elongate the overactive muscles with static stretching

  • Gastrocnemius/Soleus Static Stretch
  • TFL/IT Band Stretch
  • Kneeling Hip Flexor Static Stretch
  • Adductor Static Stretch

Perform 1-2 sets of the stretch per muscle group and hold the stretch for a maximum of 30 seconds. Brent Brookbush, has a good static stretching playlist that demonstrates these exercises.

Step 3 – Turn on the underactive with isolated strengthening

The above exercises are just examples. There are many exercises to choose from. The important thing is to target the right muscles. Fix the core, attack the glute medius and glute maximus, and work the tibialis anterior and posterior.

In summary, too often I see individuals with shin pain ceasing activity, buying new shoes, investing hundreds of dollars in custom orthotics, or giving themselves an ice bath. Shin splints do not have to be the end of training. They are easily preventable and curable as long as you fix the problem. Following a simple and structured program to correct of common movement dysfunction patterns can eliminate shin splints and many other lower body injuries like Achilles pain, runner’s knee or hip pain.

The Glute vs TFL Muscle Battle: Proper Exercise Selection to Correct Muscle Imbalance

Reference:
Selkowitz, DM, Beneck, GJ, and Powers CM. Which Exercises Target the Gluteal Muscles While Minimizing Activation of the Tensor Fascia Lata? Electromyographic Assessment Using Fine-Wire Electrodes. J Orthop Sports Phys Ther. 2013; 43(2):54-64.

Overview and Introduction:
JandaSyndromesVladamir Janda revolutionized human movement dysfunction and rehabilitation when he described three compensatory movement patterns as a result of pattern overload and static posturing. Most musculoskeletal injuries are multifactorial, but more often than Janda’s described three compensation patterns – upper crossed syndrome, lower crossed syndrome and pronation distortion syndrome – are the key contributor to our pain complaints.

Since Janda introduced this topic research has continued to answer what and why questions surrounding these compensatory patterns. We have learned hypertonic / hypotonic muscles and the delicate interplay they have on integrated functional movement. Studies continue to show how these dysfunctional patterns lead to our most common injuries – PFPS, ITBS, Achilles tendinopathy, plantar fasciitis, epicondylopathy, biceps tendinosis, impingement syndromes, MTSS, etc.

As research evolves we continue to fine-tune our clinical decision making. For several years now rehabilitation journals have published articles linking a myriad of injuries to lower-crossed syndrome, gluteal inhibition, and over-activation of the tensor fasciae latae (TFL). We have learned that these should be a focal point in our rehabilitation techniques to resolve lower extremity overuse injuries. The article by Selkowitz, et al., in the Feb 2103 edition of JOSPT is unique and what I believe to be one of the most clinically relevant studies to be published in the last few months. I liked it so much I had to blog it.

Statement of the Problem:
A common descriptor associated with lower-crossed syndrome is femoral internal rotation and hip adduction. From a rehabilitation perspective we must enhance neuromuscular firing of hip abduction and external rotation. In addition we must inhibit over activity of hip adductors and hip internal rotators.

As a health care practitioner we understand the delicate interplay of functional anatomy. The problem is how do we inhibit a chronically hypertonic TFL while activating the hypotonic gluteal group if they both produce similar movements? It is a fine balance we must be cognizant of when designing rehabilitation programs.

This study examined which exercises elicit the greatest gluteal (medius / maximus) activation while minimizing activation of the TFL. This is exactly what we need to know when designing a rehabilitation program to target lower crossed compensatory patterns.

Study Methodology:
Electromyographic data of the gluteus medius and superior gluteus maximus was collected utilizing fine-wire electrodes on 20 healthy participants during the execution of 11 exercises.

Results:
Seven of the 11 exercises -bilateral bridge, unilateral bridge, side step, clam, squat and two quadruped variations – demonstrated statistically significant greater muscle activation in the gluteus medius and gluteus maximus when compared to the TFL. Side-lying hip abduction, hip hike, the lunge, and the step-up were either not significant or demonstrated higher TFL values compared to the gluteal group.

The authors ranked the exercises in order of highest gluteal to TFL ratios. Clam, side step, and unilateral bridge had the highest ratios, while lunge, hip hike, and squat had the lowest ratios.

Clinical Application of Data:
Altered arthrokinematics and muscle imbalances are a common cause of overuse injuries. Lower-crossed syndrome is a common compensatory pattern that is associated with hypertonicity of the hip flexors complex, which elicits altered reciprocal inhibition of the gluteal group. Targeting this dysfunctional pattern using proper exercise selection indicated here can prevent injuries, improve patient outcomes, and restore optimal function. When designing your program be sure to reference the material here to determine a proper rehabilitation program.

Limitations:
Studies are equivocal on reliability of surface EMG vs intramuscular. However, the authors cite using the method by Delagi and Perotto, which appears reliable. Still one has to question specificity and sensitivity to a minimal degree.

The participants were instructed on proper exercise technique. However, substitutions patterns are common in patients exhibiting muscle imbalance. Any slight deviation from proper technique can skew the data. I am curious how closely exercise technique was monitored and what occurred when deviation did occur.

Summary:
Like I said from the top, rarely do we have a published data with such clinical relevance. Studies that show how deep ultrasound penetrates a rats muscle are great, but clinically have little clinical utility. Data revealed here will guide decision making on proper exercise selection and ensure they are applying the proper strengthening exercise to specifically target the underactive glutes while avoiding the over active TFL. Kudos to the authors.

15 Minute Rehabilitation: It’s Time to Unplug

While working as an athletic trainer I was frustrated and furious with the constant flow of athletes ‘needing’ certain treatment. I was tired of students and support staff hooking athletes up to every biophysical modality in the athletic training room. Why? They had no clue – it felt good to the athlete, it ‘worked’, it was easy, the coach said to – my blood beginning to boil.

It seemed every injury for all athletes was treated by the wonderful benefits of electrical stimulation. After a quick evaluation the injured body part is surrounded by electrodes and covered with a comfy hot or cold pack. For 20 minutes the athlete sat there with a special tingly, prickly feeling that gives those in pain a warm fuzzy feeling. As a health care provider there is nothing easier than slapping on a few electrodes and walking away for 20 minutes; it’s easy and clients love it. I must admit that I have fallen victim to the persuasive effect of e-stim as both an athlete and health care provider. But it was time to unplug. The overuse of modalities coupled with the under usage of manual therapy and rehabilitation was sickening. So what did I do?

I unplugged it all. I took all of the modalities and put them in one room with one table. It was not to be used unless a valid reason existed to do so. Holy s***, did I make some people mad. Instantly, coaches and athletes, became health care experts saying it was needed. But for the fellow athletic trainers – they understood. It made them learn reasons why to use modalities. It also help them look at the treatment of injuries in another way. This method also enhanced their ability to identify and correct common human movement dysfunction than causes pain.

Before I go further and before those in support of  modality usage start throwing data at me, stop. E-Stim (along with the other biophyscial modalities) is a versatile modality, has few contraindications and is a quick easy way to reduce pain in most clients. For this reason e-stim is often the first tool of choice.  The effectiveness and subsequent overuse of e-stim, is secondary to pain relief. A structure called the substantia gelatinosa (SG), lies in the IV Laminae of the dorsal horn in the spinal cord. This structure is where nociceptive (pain) fibers terminate and decisions with regards to how pain should be handled are determined. Also terminating in the SG are A Delta fibers (sensory fibers). E-stim has several modulations, but the most common is for a theory called “Gate Control Theory”. Essentially, electrical impulses from e-stim therapy bombard the SG through the A Delta Sensory fibers and over-ride the nociceptive fibers and ‘turn-off’ pain. The pain relief can last from minutes to several hours.

Unfortunately, all too often, athletic trainers try to control pain rather than fix the problem. Rather than spending 20 minutes turning off pain, why not allocate the time to long-term pain relief and correcting dysfunction? Why not spend 20 minutes correcting a muscle imbalance, which will lead to lifelong change and keep athletes out of your athletic training room? All you are doing is putting a band-aid on a problem, unfortunately you have to keep putting that band-aid on everyday for the entire season. I said it before and will say it again – Athletic Trainers need to transition from triage to rehabilitation and optimizing functional movement. However, I understand the problem: it is a time crunch. Athletic training rooms are vastly understaffed – making it difficult to dedicate 20 minutes of rehabilitation time to one athlete, when 3oo are lined up at the door. So we have a time crunch, but there is a solution…

Almost all injuries we see in the athletic training room are a result of:  altered length tension relationships, altered arthrokinematics, altered neuromuscular recruitment. Collectively, these issues are what makes up human movement dysfunction. You name the injury – tendonitis, ACL tears, PFPS, fasciitis, MTSS, impingement, rotator cuff pathologies, you get the point – can be linked back to human movement dysfunction. The good is that human movement dysfunction is identifiable, preventable and correctable. The better is that the strategies to correct human movement dysfunction can be done in less than 15 minutes per day.

Yes, I said it – you can perform a 15 minute rehabilitation session. I presented on this topic at the NATA District 10 and District 2 conference and even did a few customized workshops. A colleague presented on the topic at the June 2012, NATA conference. Imagine correcting a problem, preventing injury, or rehabilitating an athlete in 15 minutes per day. That would be better than slapping on a pair of electrodes and setting up hi-frequency biphasic sensory-level stimulation. You will fix the problem and reduce pain. How you ask?

As I said above, human movement dysfunction is often composed of three problems, all which are identifiable during human movement assessments. The assessments will indicate where human movement impairments exist. But lets say for example we have a patient with patellar tendonitis, we would likely see functional impairments somewhere along the lower extremity. Below is a sample program I would do in 15 minutes.

Decrease neurological drive to hypertonic tissue – 3 minutes 

Exercise: Self-Myofascial Release or Manual therapy

  • Gastrocnemius/Soleus – 60 seconds
  • Adductors – 60 sec
  • TFL/IT-band – 60 sec

Lengthen hypertonic muscle or joint tissue – 3 minutes

Exercise: Static stretch or joint mobilization

  • Gastrocnemius/Soleus Stretch – 1 set @ 30 sec
  • Kneeling Hip Flexor Stretch – 1 set @ 30 sec
  • Adductor stretch – 1 set @ 30 sec
  • Posterior joint mobilizations at the ankle – 90 seconds

Increase neurological drive to hypotonic tissue – ~ 6 minutes

Exercise: Isolated Strengthening or positional isometrics

  • Resisted Ankle Dorsiflexion – 2 sets x 15 reps (slow) (2 minutes)
  • Resisted Hip Abduction and External Rotation- 2 sets x 15 reps (slow) (2 minutes)
  • Resisted Hip Extension – 2 sets x 15 reps (slow)  (2 minutes)

Integrated Dynamic Functional Motion – ~ 3 minutes

Exercise: Integrated movements

  •  Ball Squats w/Resistance Band Around Knees – 2 sets x 15 reps (slow)

Note this is just a sample program. In the above instance I assumed the client had limited ankle dorsiflexion and muscle imbalance at the hip musculature. The specific human movement impairment will be client and injury dependent. That said, you can follow the same formula and perform rehab in the same amount of time that it takes to perform e-stim. Too often we use the time crunch as an excuse for our failure to perform due diligence as health care practitioner. We have a job – that is to keep athletes healthy. Let’s choose the path that works – not the band-aid.

 

The Dreaded Hamstring Strain

How many times are we going to see an athlete suffer from recurrent hamstring strains? How many times are we going to see delayed recovery from a mild hamstring pull? Unfortunately, it’s going to continue, because some health and wellness specialists (ATCs, PTs, and Strength coaches) are looking in the wrong area. Sometime ago I had a disagreement with the parent of an athlete (the parent also happened to be a chiropractor).

The parent was upset that I was not fixing the hamstring in rehabilitation. He said, ‘She needs flexibility and strengthening of the hamstring! You are not doing that!’ The concerned parent actually complained to my athletic director. Now I have my boss challenging me on my treatment.  Ugh, such is the life of an Athletic Trainer. Thankfully, after conversation, he backed me up.

Now, before I swarmed by an angry mobs of chiropractors trying to beat me with sticks, this is not about chiropractors – this is just one example of the trap that many health care practitioners – Athletic Trainers, PTs, OTs, RKTs, DC, MD, LMTs, etc – fall in to.  Many practitioners are too concerned with ‘the what‘ rather than ‘the how‘ and ‘the why‘.

This particular parent was upset and did not understand why I was not addressing the what. In my defense, I was dedicating some time to fixing the what – using ultrasound, massage, PROM, etc – to facilitate proper tissue healing. However, I knew this would not fix the problem. In this particular instance (and most hamstring injuries) I needed to correct human movement dysfunction (poor neuromuscular recruitment, suboptimal arthrokinematics, and altered length-tension relationships). This will fix the problem and go a long way in prevention of re-injury. Flexibility and strengthening of the hamstring is not needed.

Don’t get me wrong, flexibility is a good thing, but hamstring flexibility is way overrated. Take yoga as an example, yoga is  known for improving flexibility (among other things). In fact, I’ve prescribed yoga to many of my clients. Unfortunately, many yoga poses place the already lengthened hamstrings under further stretch. Hamstring strains are very common in Yoga enthusiasts, especially amateurs. It is so common, it was given a name – Yoga Butt. Yoga butt is essentially a tear of the proximal hamstrings, subsequent to repetitive lengthening of the hamstrings.   There is a reason for this.

Secondary, to pattern overload or prolonged static posturing many individuals suffer from chronic hypertonicity and mechanical shortening of the psoas.  A chronically tight psoas will cause altered reciprocal inhibition of its functional antagonist, the gluteus maximus. With this muscle imbalance an abnormal force coupling occurs yielding poor arthrokinematics in the form of an anterior pelvic tilt. Because of the hamstring’s proximal attachment to the ischial tuberosity an anterior pelvic tilt will cause the hamstring to migrate superiorly and posteriorly, essentially lengthening the muscle. If you recall from your applied kinesiology course, muscles have optimal length tension relationships – a zone where maximal muscle force can be produced. The longer or shorter a muscle is, the less the muscular force can be applied or tolerated.

In addition to this, with the glute inactivity caused by altered reciprocal inhibition. So now a synergistic muscle must help with glutes ability to perform hip extension. Which muscle is going to this? You guessed it – the hamstring.  This is called synergistic dominance – the hamstring (synergist) must dominate the movement of hip extension.

If you recall from above, the hamstrings are working in a lengthened and suboptimal position. Coupled with this it is being asked to do more work. So, when we are applying the greatest amount of muscular tension – eccentric contraction near end ROM (such as sprinting) – the hamstring fails. Commonly it fails near the proximal attachment secondary to a line of pull change.

Why do we see so many hamstring injuries? Because health and wellness professionals are not identifying or intervening to correct human movement dysfunctional patterns.

Why do we see so many recurrent hamstring injuries? Because we are not fixing what needs to be fixed and allowing the hamstring to work inefficiently.

Why are we seeing delayed recovery? Because we are using antiquated rehabilitation techniques. We are focusing on the hamstring when the problem exists elsewhere.

Correcting movement dysfunction and optimizing function will fix the problem. This is so much easier in the long run. Recently there has been a slew of research published discussing the effectiveness of high-intensity eccentric hamstring strengthening on the prevention and rehabilitation of hamstring injuries. Yes, eccentric hamstring exercises work, but why? They work because you are making the hamstring more tolerable and able to function with poor mechanics. Again, this is not fixing the problem. To fix the problem you must address glute weakness and hip flexor tonicity.