Tag Archives: mechanotransduction

The Ice-less Management of Acute Ankle Sprains

I’ve written several articles on the use of ice on injuries, the need for inflammation, and the intricate physiological process of tissue healing.  Despite the mounds of evidence that ice is not all it is cracked up to be, there still exists a dogmatic polarization that it has magical tissue-healing properties. I often get told “Prove to me that ice does not work.” No; that is not how evidence-based practice works. You need to prove that ice does work for the reasons you use it.

Read the comments I receive, and you will recognize our ice dependency. “If I don’t ice, then what do I replace it with?” That statement screams dependency. When we take away ice, we feel that a void must be filled. It doesn’t! The treatment decision is multifactorial; the injury type, severity, tissues involved, the person, etc., all play a role in how you treat that specific injury.

A 2013 position statement made by the National Athletic Trainers’ Association on the management of ankle sprains found ice therapies had a C-level of evidence 1. Meaning little or poor evidence exists. In an interview, the author of that article said: “I wish I could say that what we found is what is really being done in a clinical setting…. Maybe our European colleagues know 20151221_102243_resizedsomething we don’t…there is very little icing over there.”

The blog shows how I treated an acute ankle sprain without ice by using all of the fun little tools learned through school and further honed with clinical experiences, trial, and error. I did what I thought was best. This protocol should not be used for every ankle injury. My treatment and rehabilitation plan changed daily. Everything I did was based on my ankle needs. I did NOT use any biophysical or electromagnetic modalities. Everything I did was manual. This is not to say that I would not use other modalities, I just chose not to. My only rule? No ice. Continue reading

10 Reasons – Icing Injuries is Wrong

iceIf you know me, you are aware of my anti-ice stance. The ice debate continues to heat up. As peer-reviewed data continues to pour in, the evidence for the use of ice to treat musculoskeletal injury still lacks. I’ve written about ice many times, but many of my anti-ice articles are science-y and focused around one topic. I wanted to do something different this time. I wanted to keep it short, sweet and comprehensive. So, I bring you 10 reasons why we shouldn’t ice injuries. Continue reading

Icing Injuries: Are We Evidence-Based?

Are you an evidence-based practitioner? Think about it; are you really?

An athletic trainer working a Division 1 women’s volleyball tournament with elite Top-25 teams sent me a text: “You should do a study on the average number of ice bags used by volleyball teams after a match… Entire teams are getting ice on both knees and the hitting shoulder. No post-match mobility work, just pounds of ice. Crazy! Some athletic trainers and strength and conditioning coaches are too ignorant and too lazy to provide proper warm-up and cool-down protocols to address mobility.” This is not shocking to me. I worked with Division I volleyball for several years and I observed this too. This is where I learned ice is overused.  This isn’t just a volleyball thing; this is an all-sport issue. Continue reading

RICE: The End of an Ice Age

Coaches have used my “RICE” guideline for decades, but now it appears that both Ice and complete Rest may delay healing, instead of helping.” – Gabe Mirkin, MD, March 2014


ice-for-injuriesIn 1978, Gabe Mirkin, MD coined the term RICE. Health care practitioners to laypersons are quick to recognize RICE as the ‘gold standard’ treatment option following injury. Followers of my blog know my stance against ice and now there is support from the physician who coined the term. Yes, the very same physician, Dr. Gabe Mirkin, who coined RICE, is now taking a step back. I reached out to Dr. Mirkin and asked for permission to share his story. As you will read below in Dr. Mirkin’s full post, the lack of evidence for cryotherapy is something we must listen to.

Continue reading

Why Ice and Anti-inflammatory Medication is NOT the Answer

Icing a sprained ankle In July I posted a blog discussing The Overuse of Cryotherapy. The controversy surrounding the topic made it one of the most popular blogs I’ve written. What is surprising to me is that a controversy exists at all. Why, where, and when did this notion of anti-inflammation start? Ice, compression, elevation and NSAIDs are so commonplace that suggesting otherwise is laughable to most. Enter an Athletic Training Room or Physical Therapy Clinic nearly all clients are receiving some type of anti-inflammatory treatment (ice, compression, massage, NSAIDs, biophysical modalities, etc). I evaluated a client the other day and asked what are you doing currently – “Well, I am taking anti-inflammatories and icing.” Why do you want to get rid of inflammation and swelling? I ask this question for both chronic and acute injury!

Continue reading

Ice: The Overused Modality?

Many years ago I got tired of watching my athletes roll in to the ice-for-injuriesathletic training room and slap on ice. These athletes are in a drug-like induced state of ice addiction. Their athletic trainers keep feeding the disease, by recommending cold treatment and doing the easy – here’s ice, shut-up, leave. I felt I was doing a disservice to my athletes and asked myself, “Why are we icing this injury?” I never had an answer that was supported by evidence. So I began my own case study.

I took 9 Division I athletes (6 patellar tendinopathy, 2 bicipital tendinopathy and 1 subacromial impingement) and  had the athletes cease all cryotherapy and electrical stimulation.

Continue reading

Mechanotransduction

You have an athlete with a stress fracture. The physician prescribes active rest and places the athlete in a non-weight bearing boot. Sound familiar? Suppose I told you the better option is to place some load on that bone and non-weight bearing is not recommended. Would you think I am nuts? Maybe I can convince you otherwise. Let me explain but, before you read the next paragraph and decide to leave the page, bear with me. What follows this introductory piece may provide insight to further understanding of injury pathophysiology and could revolutionize the future of rehabilitation science.

In January 2013 the Annals of Human Genetics published an article that demonstrated Achilles Tendinopathy is associated with gene polymorphism (Abrahams, et al., 2013). I am not a geneticist by any stretch of the imagination, so pardon my basic explanation. COL51A is a gene that encodes the development and organization of Type V collagen. Type V collagen is a collagen that is distributed in tissues as a component of extracellular matrix and composed of one pro alpha 2 (V) and two pro alpha 1 (V) chains. This collagen can be found in ligaments, tendons, and connective tissue. COL51A plays an integral role in development and maintenance of connective tissue. Abrahams, et al. (2013) demonstrated that polymorphisms occur in the COL51A gene causing altered structure of collagen resulting in tendionpathy. Continue reading