Tag Archives: rehabilitation

The Ice-less Management of Acute Ankle Sprains

I’ve written several articles on the use of ice on injuries, the need for inflammation, and the intricate physiological process of tissue healing.  Despite the mounds of evidence that ice is not all it is cracked up to be, there still exists a dogmatic polarization that it has magical tissue-healing properties. I often get told “Prove to me that ice does not work.” No; that is not how evidence-based practice works. You need to prove that ice does work for the reasons you use it.

Read the comments I receive, and you will recognize our ice dependency. “If I don’t ice, then what do I replace it with?” That statement screams dependency. When we take away ice, we feel that a void must be filled. It doesn’t! The treatment decision is multifactorial; the injury type, severity, tissues involved, the person, etc., all play a role in how you treat that specific injury.

A 2013 position statement made by the National Athletic Trainers’ Association on the management of ankle sprains found ice therapies had a C-level of evidence 1. Meaning little or poor evidence exists. In an interview, the author of that article said: “I wish I could say that what we found is what is really being done in a clinical setting…. Maybe our European colleagues know 20151221_102243_resizedsomething we don’t…there is very little icing over there.”

The blog shows how I treated an acute ankle sprain without ice by using all of the fun little tools learned through school and further honed with clinical experiences, trial, and error. I did what I thought was best. This protocol should not be used for every ankle injury. My treatment and rehabilitation plan changed daily. Everything I did was based on my ankle needs. I did NOT use any biophysical or electromagnetic modalities. Everything I did was manual. This is not to say that I would not use other modalities, I just chose not to. My only rule? No ice. Continue reading

Blame the Brain: Tips for the Physical Therapist and Athletic Trainer

Novel treatment of muscle weakness following joint injury has sought to develop interventions that can excite the neuromuscular system and allow for more effective interactions between the nerves and muscle.”

Chad and Brent both play the same position for the same basketball team—same practice routine, same strengthening program, same injury prevention program—but Chad is suffering from left patellar tendonitis. Why is Chad injured and not Brent? We have adopted laymen medical terms such as “Runner’s Knee”, “Little Leaguer’s Elbow”, “Tennis Elbow” or “Jumper’s Knee” implying these types of injuries are caused by the activity. But are they? What if Chad’s “Jumper’s Knee” is linked to a brain or spinal cord deficit and not some musculoskeletal dysfunction?

Everything we do —touch, sense, feel, contract, move— triggers an action potential that is sensed by millions of mechanoreceptors, which follows a path to Spinal tractthe brain.

  • The action potential is picked up by peripheral nerves and carried to the dorsal root ganglion cell and travels to the spinal cord.
  • The impulse goes through the dorsal column nuclei and the impulse is taken to the thalamus in the brain via the spinothalamic tract.
  • In the brain, this impulse synapses with the ventroposterolateral thalamus and onto the somatosensory cortex.
  • A motor response is then triggered.

This path is followed every time. Sensory or motor deficits anywhere along this path can lead to injury. Sometimes, as health care providers we get in a rut and look to treat the body part or underlying movement dysfunction. While this practice is not necessarily bad, it might not be what is needed. Correcting muscle imbalance or addressing joint dysfunction may not be the answer. Removing the athlete from activity to reduce overload may not be the answer. Our goal should aim to fix deficits along the neural path. Continue reading

Butt Battle

A nice booty is not always a good booty.

A nice booty is not always a good booty.

Everyone loves a nice butt. Walking down the street, at the mall, or at the bar, there is bound to be a butt that catches your eye. Like a kitten following a piece of yarn, there is the occasional butt that walks by and causes heads to turn, leaving onlookers with a severe neck strain and mouths agape. Don’t act all innocent and holier than thou, we’ve all done it! Therapists and rehabilitation specialists are no different. In fact they can spend an entire day staring at booty. However, we are not looking to see if “Baby Got Back” or how that plump bump fills a pair of Wranglers, Levis, Seven, or True Religion jeans. We have a reason to look and it is strictly professional; is the little butt working?

For several years now rehabilitation journals have published articles linking a myriad of lower extremity injuries to poor gluteal control. While the glute max – that which makes our heads turn – and the glute minimus are both important, the glute medius is the real problem. We have learned the important role the glute medius has on controlling lower extremity mechanics. Glute medius inhibition precipitates many lower extremity injuries such as ACL tears, Patellofemoral pain, Iliotibial band syndrome, Achilles tendinopathy, plantar fasciitis, MTSS (shin splints), the list goes on. Rehabilitation specialists must pay special attention in strengthening the glute med., but how? What is the best exercise?

Continue reading

3C’s + P Approach to Successful Outcomes

How many times have you racked your head wondering; why is this not getting better? How come they’re still in pain? How do we have all of this evidence and knowledge at our disposal, yet individuals do not respond as anticipated? The science says, for injury ‘Z’ treat with ‘X’ and rehabilitate with ‘Y’, yet when we apply those tools they don’t work? Why are they not getting better? What are you doing wrong? What are they doing wrong? Continue reading

ACL Injury: New Information on Prevention, Rehabilitation, and Consequences

I have written about knee injuries so much. Every day we are bombarded with research that quite frankly, it gets boring. The problem is with approximately a quarter-million ACL injuries per year, it is safe to say the injury is rampant. The devastating nature and commonality of the injury has provided loads of information on prevention, rehabilitation and mechanisms of injury. I am not going to regurgitate them all, but do want to share some recently published articles that sports medicine experts should read.

Article 1: Negahban, Et al. A systematic review of postural control during single-leg stance in patients with untreated anterior cruciate ligament injury. Knee Surgery Sports Traumatology and Arthroscopy, May, 2013.

I love systematic lit reviews and this SLR aimed to determine postural control on those with ACL injuries. We have many internal systems and senses that help us balance.  Beyond the use of our eyes and ears to sense balance, tiny mechanoreceptors and proprioceptors exist in our tissue that sense abnormal movement. This study found that when the eyes are closed individuals with ACL injuries had increased postural sway and loss of balance. This indicates that the injury and inflammation following injury inhibits our body’s internal mechanism to sense balance. When rehabilitating, be sure to emphasize proprioception exercises.

Article 2: Thomas, Abbey, et al.  Lower Extremity Muscle Strength After Anterior Cruciate Ligament Injury and Reconstruction. Journal of Athletic Training published online first, 2013.

Despite advances in rehabilitation and the numerous studies published on ACL rehabilitation protocols, we appear to be failing. This study shows that at 6 months Status Post ACL reconstruction that global weakness still exists. When comparing strength output from injured vs. uninjured legs it appears the knee-extensors (quads) and knee flexors (hamstrings) are weaker at 6 months when compared to the contralateral side. Conversely hip and ankle strength was not significantly different at 6 months. The timeline to return a player back to competition and activity is 6 months following activity and/or 95% strength of the uninjured side. This study indicates 6 months might be too early. Also, we may need to adjust our strengthening protocols to further stress knee flexion / extension strength.

Article 3 – Bell, DR, Clark, MA, Padua, DA, et al., Two- and 3-Dimensional Knee Valgus Are Reduced After an Exercise Intervention in Young Adults With Demonstrable Valgus During Squatting. Journal of Athletic Training published online first, 2013.

Darin Padua and the UNC Department of Exercise and Sport Science has done a lot of work on knee displacement and correlating the findings with ankle hypomobility and hip underactivity. This particular model used the NASM Corrective Exercise Model as the intervention procedure. This method systematically turns off hyperactive tissue and activates hypotonic tissues. The data revealed that following intervention of the ankle and hip medial knee displacement was significantly reduced.  This information is important as several studies have shown medial knee displacement to be a primary cause of ACL injuries and chronic knee pain.

Article 4: Ericksen, et, al. Different Modes of Feedback and Peak Vertical Ground Reaction Force During Jump Landing: A Systematic Review. Journal of Athletic Training published online first, 2013.

The inability of the body to absorb and control joint movement during high levels of ground reaction forces has been shown to increase risk of ACL injury as well as other chronic knee conditions.  This study evaluated the effect of expert provided and self-analysis feedback reduced peak ground reaction forces. This is not a paramount study but does shows the effectiveness of verbal queuing and observation to correct suboptimal neuromuscular control, specifically during landing and absorption of ground reaction forces through the kinetic chain. Rehab practitioners should incorporate feedback to teach clients appropriate muscle control during ACL rehabilitation.

I would like to say thank you to Darin Padua, PhD, ATC for keeping me abreast with current data. Darin is a leader in sports medicine research and specifically has many published papers on ACL injuries. Darin manages his blog site and also shares info on his twitter account. If you are a health and wellness professional seeking important information rehabilitation and prevention of injury, I recommend you give Darin a follow.

Cheers!

A Blog Inspired By and Dedicated to Runners

I have been looking for something to blog. No idea surfaced that said, “Yes, that is a great blog idea.” That was until yesterday’s tragic Boston Marathon bombing. Runners are a rare breed. You cannot keep them down. A runner’s passion for sport, resilience to challenge, and unique characteristic to rise above is unparalleled by any other athlete. I am not a runner. In fact I am the antithesis of a runner. I go in to anaphylactic shock just hearing the word aerobic exercise, but have many friends who are passionate runners. I dedicate this blog to my running friends, competitors of the Boston Marathon, the friends and family of those impacted by yesterday’s events, and runners everywhere from the competitive to non-competitive. I will keep it true to my blog site and remain sports medicine focused. I hope you find the information useful.

Running is one of the most popular recreational sports in the US. Race events can be found in almost every town. My town – Champaign, IL – has 2 events in the next 4 weeks. Some estimates say 20% of the population is runners and 10% of these people participate in race events. The benefits of exercise are well documented. Running has shown to build confidence and character, reduce stress and improve mood. However, the due to their very nature – the unwillingness stop – running does bring about an increased incidence of musculoskeletal injury.

You don’t need to be an astrophysicist to know running injury is secondary to cumulative overload. Running injuries are multifactorial; neuromuscular imbalance, poor arthrokinematics and other things such as age, nutritional status and environment are to blame. From a biomechanical point of view frontal plane knee adduction moments play a significant role in lower extremity injury. Q-angle – a measure of knee alignment – can indicate risk for running injury. An increased Q-angle can be a result of many neuromusculoskeletal inefficiencies from poor muscular hip control to limited ankle dorsiflexion and excessive forefoot pronation.

Running brings about many injuries, but the most common are Patellofemoral Syndrome, Iliotibial Band Syndrome, Medial Tibial Stress Syndrome / Tibial Stress Fracture, Achilles Tendinitis, Plantar Fasciitis, and Sacroiliac Joint Pain. What is interesting is that all of these injuries can be caused by biomechanical breakdown and neuromusculoskeletal inefficiency. The good is the dysfunctional patterns are identifiable, preventable and correctable. Below is a sample 15 minute injury prevention program from a blog I wrote in Sept 2012. Yes, 15 minutes is all you need to prevent many running injuries.

Step 1: Decrease neurological drive to hypertonic tissue – 3 minutes

  • Self-Myofascial Release (foam roll) or Manual Trigger Point Therapy
    • Gastrocnemius/Soleus – 60 seconds
    • Adductors – 60 sec
    • TFL/IT-band – 60 sec

Step 2: Lengthen hypertonic muscle or joint tissue – 3 minutes

  • Static stretch or joint mobilization
    • Gastrocnemius/Soleus Stretch – 1 set @ 30 sec
    • Kneeling Hip Flexor Stretch – 1 set @ 30 sec
    • Adductor stretch – 1 set @ 30 sec
    • Posterior joint mobilizations at the ankle – 90 seconds

Step 3: Increase neurological drive to hypotonic tissue – ~ 6 minutes:

  • Exercise: Isolated Strengthening or positional isometrics
    • Resisted Ankle Dorsiflexion – 2 sets x 15 reps (slow) (2 minutes)
    • Resisted Hip Abduction and External Rotation- 2 sets x 15 reps (slow) (2 minutes)
    • Resisted Hip Extension – 2 sets x 15 reps (slow) (2 minutes)

Step 4: Integrated Dynamic Functional Movement – ~ 3 minutes

  • Box step-up with overhead dumbbell press – 2 sets x 15 reps (slow)

Beyond the correction of movement dysfunction there are alternatives to treat running injuries which are effective and gaining popularity. This table highlights a few.

Prolotherapy This has been around since the late 1800’s, but has since become popular. The basis of prolotherapy is that it expedites healing by increasing fibroblastic activity and collagen repair.
Autologous Blood Blood is the medium that carries tissue repairing materials to injury sites. However, sometimes, blood cannot deliver adequate amounts of material to the injured area. Thus, injections directed right at the injury site deliver tissue repairing material.
PRP Like autologous blood, Platelet Rich Plasma (PRP) is injection of a concentrated mix of tissue repairing blood components, specifically platelets, which facilitate tissue repair healing.
Bone Marrow Aspirate Concentrate Despite the negative press and belief that stem cells are only derived from an unborn fetus, stem cells do come from other sources – such as bone marrow. By taking stem cells from bone marrow and injecting in to damaged areas will facilitate tissue repair.
ESWT Extracorporeal Shock Wave Therapy might best be known as lithotripsy. Lithotripsy is a procedure in which sound waves blast and destroy kidney stones. ESWT is the use of sound waves to destroy calcific tendons and ligaments.

I prefer preventing and rehabilitating injury through correcting neuromuscular inefficiencies and dysfunctional movement. The problem with the above treatments is that they are treatments. If an injury is caused by dysfunctional movement patterns and those patterns are not corrected it is likely the above treatments will simply serve as a Band-Aid because the true problem was not fixed.

If the person(s) responsible for the Boston Marathon bombing were looking to put fear in people, they chose the wrong population to target. Runners are the most stubborn and prideful athletes. No means yes, and yes means do more. If you took a graphical representation of marathon registration numbers from last night through the end of this week I would bet you’d find a spike, rather than a decline. Social media is exploding with a rise of the runner. A quote from a friends Facebook page: “If you’re trying to defeat the human spirit, marathoners are the wrong group to target” –unknown. Other movements like, wear a race shirt tomorrow, donations, and wear yellow and blue (Boston Marathon colors) have already begun. So, thank you runners for inspiring this blog post!

Recommended Reading for Sports Performance and Sports Medicine Geeks Everywhere

Sharing a breakdown of what I have discovered and read this past month. There is a little something for everyone here. Although there is a lot out there, these four articles (2 sports medicine, 2 performance)  are my favorites. All have something unique, progressive or surprising about them. Enjoy!

Sports Medicine:

Muscle Force Output and Electromyographic Activity in Squats with Various Unstable Surfaces, from the latest JSCR.

When progressing through rehabilitation programs the practitioner consistently battles the question of priority: improve strength and risk pain, set-back? Do we focus on balance and have slow progression to strength development? Can we super-set strength with balance? Can we go hard strength one day and light balance the next? Here’s a novel idea (sarcasm), let’s do both at once.

Saeterbakken and Finland measured muscle force output through on stable and unstable surfaces. The measurement was done through surface EMG, and, yes, I question reliability of surface EMG, but it is the best option out there.  What the authors found was surprising and useful. Performing isometric exercise on an unstable surface (BOSU Ball) produced lower force output, but muscle in the trunk and lower limb was similar when compared to the stable surface.

Why is this important? We have a solution to the aforementioned dilemma. We can overload the muscle to stimulate strength gains, while avoiding the load. This allows practitioners to meet obtain strength gains while avoiding the risk of set-back associated with high loading.

Full reference: Saeterbakken, AH and Finland, MS. Muscle force output and electromyographic activity in squats with various unstable surfaces. J Strength Cond Res 27(1): 130–136, 2013

*****************************************************************

Assessing Post-surgical ACL Postural Control using a Wii Board was an article I came across Sports Med Research BlogSpot.

At first I was tepid on this article figuring it was just another article showing how Wii can be used as a modality to improve balance control. I quickly jumped to the conclusion and began saying “people, it’s not the Wii board; it’s the task of balancing and stressing local and global neuromuscular control mechanisms to improve postural control.” To my surprise I was wrong.

The authors did something rather unique and plugged the Wii board in to a laptop and utilized a customized software program to assess postural control. The authors received high-quality data that may help clinicians objectively quantify postural control and neuromuscular inefficiency. Few assessments exist that provide objective, reliable data. I would love to see the authors do another study to examine the specificity and sensitivity of assessment.

Full reference: Howells BE, Clark RA, Ardern CL, Bryant AL, Feller JA, Whitehead TS, & Webster KE. Br J of Sports Med. Epub ahead of print Dec 25, 2012.

********************************************************

Performance Training:

EFFECTS OF COMBINED CREATINE AND SODIUM BICARBONATE SUPPLEMENTATION ON REPEATED SPRINT PERFORMANCE IN TRAINED MEN, from the latest JSCR.

When working with athletes on maximal speed or speed endurance, human physiology is our biggest limiting factor. Training allows body adaptation and physiological changes to improve performance and curb fatigue, but physiology is physiology – it can only be altered so much. Thus, supplements exist to cheat human physiology.

First a quick exercise physiology review. When performing maximal exertion activity the phosphocreatine system kicks in. Our cells gobble up free floating phosphocreatine stores as our primary source of energy. This energy supply gives us a maximum of 10 seconds worth of energy. Quickly our body begins breaking down glycogen stores so our body as energy to keep producing movement. After 60-90 seconds though if our intensity is still too high we hit our lactate threshold – the period where lactic acid build exceeds the cells removal rate – causing increased cellular acidity. Acidity inhibits enzymatic function and if you recall on your exercise physiology class; enzymes are responsible for breakdown of substrates to energy. So, 2 physiological factors inhibiting performance; 1- depletion of phosphocreatine, and 2- increased acidity causing enzymatic inhibition.

This study examines the combined effects of creatine and sodium bicarbonate (to retard acidic effects) supplementation of sprint performance. To no surprise the authors found that the combination of these supplements increased peak / mean power and attenuated the decline in power. Alas, we found a way to cheat human physiology.

Full reference: Barber, JJ, McDermott, AY, McGaughey, KJ, Olmstead, JD, and Hagobian, TA. Effects of combined creatine and sodium bicarbonate supplementation on repeated sprint performance in trained men. J Strength Cond Res. 27(1): 252–258, 2013.

*****************************************************************

EFFECTS OF PROPRIOCEPTIVE NEUROMUSCULAR FACILITATION STRETCHING AND STATIC STRETCHING ON MAXIMAL VOLUNTARY CONTRACTION, from the latest JSCR.

A study done a few years ago demonstrated static stretching reduced power output and performance. Since then, there has been a lot of debate and negative press on static stretching on maximal voluntary contraction (MVC). Suddenly performance experts are saying “Static stretching is the worst thing you can do.”

This is not true! First the performance declined occurred after 45 second static holds. When a stretch was held for 30 seconds or less – as recommended – there was no performance loss. This was supported by a systematic literature review done Kay and Blazevich, published in Medicine and Science in Sports and Exercise last year (Jan 2012). This current study examined effects of Proprioceptive Neuromuscular Facilitation and static stretching on Maximum Voluntary Control.

Unfortunately, the static stretch protocols  were to perform static stretches for 5 repetitions of 45 seconds. These parameters exceed the recommended static stretching variables of 2 sets of 30 seconds. As expected the authors came to the same conclusions – that static stretching decreased MVC.   Although this is a good study, you must take the data for what it is. Static stretching reduces MVC if the stretch variables is held for 45 seconds. Before you start knocking static stretching understand the data you are interpreting.

Full reference: Miyahara, Y,Naito, H, Ogura, Y, Katamoto, S, and Aoki, J. Effects of proprioceptive neuromuscular  facilitation stretching and static stretching on maximal voluntary contraction. J Strength Cond Res. 27(1): 195–201, 2013.

Postactivation Potentiation (PAP)

For years there has been a gap between performance enhancement and injury management. Strength coaches fail to address rehabilitation  and injury prevention during performance training whereas health care practitioners (ATs, PTs, OTs) fail to address performance training during injury management. There are some who continually seek to merge the two disciplines, by utilizing the unique training principles from each side. I am not saying ALL fail to bridge the gap, but it certainly is the majority.  Health care practitioners could be a bit more boundaryless and integrate performance enhancement concepts and protocols into injury management programming. One method we can use is Postactivation Potentiation or (PAP). Continue reading

15 Minute Rehabilitation: It’s Time to Unplug

While working as an athletic trainer I was frustrated and furious with the constant flow of athletes ‘needing’ certain treatment. I was tired of students and support staff hooking athletes up to every biophysical modality in the athletic training room. Why? They had no clue – it felt good to the athlete, it ‘worked’, it was easy, the coach said to – my blood beginning to boil.

It seemed every injury for all athletes was treated by the wonderful benefits of electrical stimulation. After a quick evaluation the injured body part is surrounded by electrodes and covered with a comfy hot or cold pack. For 20 minutes the athlete sat there with a special tingly, prickly feeling that gives those in pain a warm fuzzy feeling. As a health care provider there is nothing easier than slapping on a few electrodes and walking away for 20 minutes; it’s easy and clients love it. I must admit that I have fallen victim to the persuasive effect of e-stim as both an athlete and health care provider. But it was time to unplug. The overuse of modalities coupled with the under usage of manual therapy and rehabilitation was sickening. So what did I do?

I unplugged it all. I took all of the modalities and put them in one room with one table. It was not to be used unless a valid reason existed to do so. Holy s***, did I make some people mad. Instantly, coaches and athletes, became health care experts saying it was needed. But for the fellow athletic trainers – they understood. It made them learn reasons why to use modalities. It also help them look at the treatment of injuries in another way. This method also enhanced their ability to identify and correct common human movement dysfunction than causes pain.

Before I go further and before those in support of  modality usage start throwing data at me, stop. E-Stim (along with the other biophyscial modalities) is a versatile modality, has few contraindications and is a quick easy way to reduce pain in most clients. For this reason e-stim is often the first tool of choice.  The effectiveness and subsequent overuse of e-stim, is secondary to pain relief. A structure called the substantia gelatinosa (SG), lies in the IV Laminae of the dorsal horn in the spinal cord. This structure is where nociceptive (pain) fibers terminate and decisions with regards to how pain should be handled are determined. Also terminating in the SG are A Delta fibers (sensory fibers). E-stim has several modulations, but the most common is for a theory called “Gate Control Theory”. Essentially, electrical impulses from e-stim therapy bombard the SG through the A Delta Sensory fibers and over-ride the nociceptive fibers and ‘turn-off’ pain. The pain relief can last from minutes to several hours.

Unfortunately, all too often, athletic trainers try to control pain rather than fix the problem. Rather than spending 20 minutes turning off pain, why not allocate the time to long-term pain relief and correcting dysfunction? Why not spend 20 minutes correcting a muscle imbalance, which will lead to lifelong change and keep athletes out of your athletic training room? All you are doing is putting a band-aid on a problem, unfortunately you have to keep putting that band-aid on everyday for the entire season. I said it before and will say it again – Athletic Trainers need to transition from triage to rehabilitation and optimizing functional movement. However, I understand the problem: it is a time crunch. Athletic training rooms are vastly understaffed – making it difficult to dedicate 20 minutes of rehabilitation time to one athlete, when 3oo are lined up at the door. So we have a time crunch, but there is a solution…

Almost all injuries we see in the athletic training room are a result of:  altered length tension relationships, altered arthrokinematics, altered neuromuscular recruitment. Collectively, these issues are what makes up human movement dysfunction. You name the injury – tendonitis, ACL tears, PFPS, fasciitis, MTSS, impingement, rotator cuff pathologies, you get the point – can be linked back to human movement dysfunction. The good is that human movement dysfunction is identifiable, preventable and correctable. The better is that the strategies to correct human movement dysfunction can be done in less than 15 minutes per day.

Yes, I said it – you can perform a 15 minute rehabilitation session. I presented on this topic at the NATA District 10 and District 2 conference and even did a few customized workshops. A colleague presented on the topic at the June 2012, NATA conference. Imagine correcting a problem, preventing injury, or rehabilitating an athlete in 15 minutes per day. That would be better than slapping on a pair of electrodes and setting up hi-frequency biphasic sensory-level stimulation. You will fix the problem and reduce pain. How you ask?

As I said above, human movement dysfunction is often composed of three problems, all which are identifiable during human movement assessments. The assessments will indicate where human movement impairments exist. But lets say for example we have a patient with patellar tendonitis, we would likely see functional impairments somewhere along the lower extremity. Below is a sample program I would do in 15 minutes.

Decrease neurological drive to hypertonic tissue – 3 minutes 

Exercise: Self-Myofascial Release or Manual therapy

  • Gastrocnemius/Soleus – 60 seconds
  • Adductors – 60 sec
  • TFL/IT-band – 60 sec

Lengthen hypertonic muscle or joint tissue – 3 minutes

Exercise: Static stretch or joint mobilization

  • Gastrocnemius/Soleus Stretch – 1 set @ 30 sec
  • Kneeling Hip Flexor Stretch – 1 set @ 30 sec
  • Adductor stretch – 1 set @ 30 sec
  • Posterior joint mobilizations at the ankle – 90 seconds

Increase neurological drive to hypotonic tissue – ~ 6 minutes

Exercise: Isolated Strengthening or positional isometrics

  • Resisted Ankle Dorsiflexion – 2 sets x 15 reps (slow) (2 minutes)
  • Resisted Hip Abduction and External Rotation- 2 sets x 15 reps (slow) (2 minutes)
  • Resisted Hip Extension – 2 sets x 15 reps (slow)  (2 minutes)

Integrated Dynamic Functional Motion – ~ 3 minutes

Exercise: Integrated movements

  •  Ball Squats w/Resistance Band Around Knees – 2 sets x 15 reps (slow)

Note this is just a sample program. In the above instance I assumed the client had limited ankle dorsiflexion and muscle imbalance at the hip musculature. The specific human movement impairment will be client and injury dependent. That said, you can follow the same formula and perform rehab in the same amount of time that it takes to perform e-stim. Too often we use the time crunch as an excuse for our failure to perform due diligence as health care practitioner. We have a job – that is to keep athletes healthy. Let’s choose the path that works – not the band-aid.

 

The Dreaded Hamstring Strain

How many times are we going to see an athlete suffer from recurrent hamstring strains? How many times are we going to see delayed recovery from a mild hamstring pull? Unfortunately, it’s going to continue, because some health and wellness specialists (ATCs, PTs, and Strength coaches) are looking in the wrong area. Sometime ago I had a disagreement with the parent of an athlete (the parent also happened to be a chiropractor).

The parent was upset that I was not fixing the hamstring in rehabilitation. He said, ‘She needs flexibility and strengthening of the hamstring! You are not doing that!’ The concerned parent actually complained to my athletic director. Now I have my boss challenging me on my treatment.  Ugh, such is the life of an Athletic Trainer. Thankfully, after conversation, he backed me up.

Now, before I swarmed by an angry mobs of chiropractors trying to beat me with sticks, this is not about chiropractors – this is just one example of the trap that many health care practitioners – Athletic Trainers, PTs, OTs, RKTs, DC, MD, LMTs, etc – fall in to.  Many practitioners are too concerned with ‘the what‘ rather than ‘the how‘ and ‘the why‘.

This particular parent was upset and did not understand why I was not addressing the what. In my defense, I was dedicating some time to fixing the what – using ultrasound, massage, PROM, etc – to facilitate proper tissue healing. However, I knew this would not fix the problem. In this particular instance (and most hamstring injuries) I needed to correct human movement dysfunction (poor neuromuscular recruitment, suboptimal arthrokinematics, and altered length-tension relationships). This will fix the problem and go a long way in prevention of re-injury. Flexibility and strengthening of the hamstring is not needed.

Don’t get me wrong, flexibility is a good thing, but hamstring flexibility is way overrated. Take yoga as an example, yoga is  known for improving flexibility (among other things). In fact, I’ve prescribed yoga to many of my clients. Unfortunately, many yoga poses place the already lengthened hamstrings under further stretch. Hamstring strains are very common in Yoga enthusiasts, especially amateurs. It is so common, it was given a name – Yoga Butt. Yoga butt is essentially a tear of the proximal hamstrings, subsequent to repetitive lengthening of the hamstrings.   There is a reason for this.

Secondary, to pattern overload or prolonged static posturing many individuals suffer from chronic hypertonicity and mechanical shortening of the psoas.  A chronically tight psoas will cause altered reciprocal inhibition of its functional antagonist, the gluteus maximus. With this muscle imbalance an abnormal force coupling occurs yielding poor arthrokinematics in the form of an anterior pelvic tilt. Because of the hamstring’s proximal attachment to the ischial tuberosity an anterior pelvic tilt will cause the hamstring to migrate superiorly and posteriorly, essentially lengthening the muscle. If you recall from your applied kinesiology course, muscles have optimal length tension relationships – a zone where maximal muscle force can be produced. The longer or shorter a muscle is, the less the muscular force can be applied or tolerated.

In addition to this, with the glute inactivity caused by altered reciprocal inhibition. So now a synergistic muscle must help with glutes ability to perform hip extension. Which muscle is going to this? You guessed it – the hamstring.  This is called synergistic dominance – the hamstring (synergist) must dominate the movement of hip extension.

If you recall from above, the hamstrings are working in a lengthened and suboptimal position. Coupled with this it is being asked to do more work. So, when we are applying the greatest amount of muscular tension – eccentric contraction near end ROM (such as sprinting) – the hamstring fails. Commonly it fails near the proximal attachment secondary to a line of pull change.

Why do we see so many hamstring injuries? Because health and wellness professionals are not identifying or intervening to correct human movement dysfunctional patterns.

Why do we see so many recurrent hamstring injuries? Because we are not fixing what needs to be fixed and allowing the hamstring to work inefficiently.

Why are we seeing delayed recovery? Because we are using antiquated rehabilitation techniques. We are focusing on the hamstring when the problem exists elsewhere.

Correcting movement dysfunction and optimizing function will fix the problem. This is so much easier in the long run. Recently there has been a slew of research published discussing the effectiveness of high-intensity eccentric hamstring strengthening on the prevention and rehabilitation of hamstring injuries. Yes, eccentric hamstring exercises work, but why? They work because you are making the hamstring more tolerable and able to function with poor mechanics. Again, this is not fixing the problem. To fix the problem you must address glute weakness and hip flexor tonicity.

Research Review: Muscle Energy Technique on Non-Specific Lumbopelvic Pain

Complete Reference: Selkow NM, Grindstaff TL, Cross KM, Pugh K, Hertel J, Saliba S. Short-Term Effect of Muscle Energy Technique on Pain in Individuals with Non-Specific Lumbopelvic Pain: A Pilot Study. J Manual and Manip. Ther 2009; 17(1): E14–E18.

Clinical Relevance:

Low back pain effects nearly 80% of the adult population. It is the most costly injury in terms of workers’ compensation costs and indemnity. Oftentimes clinicians treat non-specific low back pain with unfocused rehabilitation, medications, or biophysical modalities. Hypertonicity of neuromyofascial tissue can be the primary cause of low back pain. This can be quickly and effectively addressed with manual therapy techniques.

Introduction:

Muscle Energy Techniques (MET) is a form of manipulative therapy that has been used to treat muscle imbalance and pain disorders. Clinicians have frequently utilized MET as a tool to treat lumbopelvic pain (LPP). Lumbopelvic pain is often associated with muscular imbalance which can cause unilateral anterior innominate rotation of the pelvis. The purpose of this study is to examine the effectiveness of a single MET treatment for immediate lumbopelvic pain reduction and pain reduction 24 hours following treatment.

Study Limitations:

  • Control group had a higher visual analog scale (VAS) for current pain than worst pain.
  • Only 1 MET treatment intervention was used
  • Subjects were selected from general population, not from health care settings.
  • No measures taken to confirm if the pain was secondary to lumbopelvic disorder.
  • Post-study measure pain but did not measure correction of anterior innominate rotation.

Methods:

Subjects:

  • 20 subjects taken from general population; 10 control and 10 treatment
  • 16 male; 4 female
  • Average age; control group = 29.7 years, treatment group = 24.1 years
  • Subjects must have acute episode of LPP and demonstrated anterior innominate rotation of at least 2°.
  • Subjects exclusions: LBP for > 6 weeks, radicular pain below the knee, history of back surgery, or have been diagnosed by a physician.

Dependent Variables:

  • Current pain
  • Worst pain over 24 hours
  • Pain provocation test yielded greatest pain
  • Pain intensity produced by the provocation test

Independent Variables:

  • Treatment Condition
    • MET treatment
    • Control
  •  Time
    • Pretest
    • Post treatment
    • 24 hours post treatment            

Procedures:

  • Double blind, randomized, controlled trial
  •  Examiner #1 – performed 5 sacro-illiac pain provocative exams then notified in writing of physical exam findings to ensure treatment was performed on proper side for treatment group
  • Examiner #2 – Performed MET or control treatment

Instrumentation:

  • Visual Analog Scale (VAS) – used to measure subjective pain rating
  • PALM – Palpation meter to measure relative anterior innominate rotation

Statistical Analysis:

  • Baseline VAS current and worst pain measured by t-tests.
  • 2X3 repeated ANOVA to analyze treatment and control groups for current VAS, worst over 24 hour VAS, and worst pain provocation VAS
  • Mann-Whitney U test analyzed difference in the number of pain provocative tests pre and post treatment.

Results:

  • VAS worst pain; significant difference with MET treatment group for worst pain over 24 hours (F=5.36, P= .03)
  • No significant difference for VAS of current pain (F=3.93, P=.06
  • No significant difference for VAS pain provocation (F=0.81, P=.46)
  • Significant pain reduction for both groups (P=.04) between days

Conclusion:

Overall, worst pain over 24 hours was significantly reduced following MET treatment when compared to the control. As a clinician working with clients and non-specific low back look for muscle imbalances that can be corrected with manual therapy techniques such as muscle energy, which inhibits overactive tissue then allows for elongation.